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Abstract. In the product design life-cycle, the conceptual design stage
is an important and time-consuming phase where designers ideate in
the form of sketches and 3D renderings of a product. Specifically, with
3D renderings, the choice of material texture and color is an impor-
tant aspect that is often critiqued by designers because it impacts the
product’s visual aesthetic and the impression it evokes in the customer
when first viewing the product; thus, making material selection and the
conceptual design stage, overall, challenging. In this study, we turn to
deep texture synthesis for generating material textures and propose a
novel method, TextureAda. TextureAda creates high-fidelity textures by
performing adaptive instance normalization between multiple layers of
a texture generator and a pre-trained image encoder. Our experiments
show that our method beats previous methods in texture synthesis visu-
ally and quantitatively. Lastly, we show how TextureAda can be applied
for ideation in product design conceptualization by material texturing
3D models of furniture.
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1 Introduction

Product design deals with developing physical items like furniture and elec-
tronic appliances to address specific customer needs and improve quality of life.
In order to conceptualize, create, and sell a product, product designers undergo
the following stages [26]: research, brief specification, conceptual design, design
development, detailed design, and production, as in Fig. 1. Notably, in the con-
ceptual design stage, designers ideate product designs in the form of 3D ren-
derings where they are critiqued based on many aspects, especially in material
choice. The material’s texture and color are driving factors of the product’s per-
sonality which comprises its aesthetics, associations with certain concepts, and
perceptions evoked by the customer [1]. Choosing the right colors and material
textures is critical in product design, and exploring alternatives can be time-
consuming for designers. As a result, design critique sessions can iterate for days
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or even weeks until the product’s 3D rendering reaches a desirable look, making
design conceptualization a challenging process.

Fig. 1. The product design life-cycle and its stages from Rodgers & Milton [26].

In generative artificial intelligence, texture synthesis has been a longstanding
task of creating image textures from real-life exemplars using deep generative
models. Previous works train decoders that generate a single texture [12,13,
28,35,38] or a wide variety of textures [2,22,23,31,32] in a single feed-forward
pass. Other studies take a step further in applying generated textures onto 3D
objects by inputting exemplar object images [14,27,40,43] or textual descriptions
[16,17,25].

In this study, we propose to leverage deep texture synthesis and tradi-
tional 3D rendering for material texturing parts of 3D models during product
design conceptualization. Building on previous deep texture synthesis methods,
we introduce TextureAda, a generative model that performs adaptive instance
normalization [15] from multiple layers of a pre-trained VGG-19 [36] feature
extractor onto multiple layers of a modified Texture Net [38] to synthesize high-
fidelity textures. Results from our experiment in texture synthesis, show that
TextureAda beats previous methods visually and quantitatively based on Single
Frechet Inception Distance (SIFID) [11,35]. Furthermore, we show its application
in the material texturing of 3D furniture for product design conceptualization.
Overall, the main contributions of this study are (1) TextureAda, a novel deep
generative model for texture synthesis and material texturing of 3D models,
and (2) results of a quantitative study where TextureAda outperforms previous
methods in texture synthesis based on SIFID.

2 Generative AI for Texture Synthesis and Transfer

2.1 Texture Synthesis

Texture synthesis is the task of inferring image textures or patterns based on
real-world examples. Pioneering studies proposed non-parametric methods in
texture generation by predicting neighboring pixels [9,41] or texture patches
[8,21] from a given sample of exemplar pixels. With the advent of deep learning,
many studies have used neural networks to synthesize textures. Based on neural
style transfer, the early work of Gatys et al. [10] optimizes a noise image on
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exemplar texture image features from a pre-trained VGG-19 [36] that are repre-
sented as Gram matrices. Subsequent works train decoders on texture images for
rapid generation [12,13,28,35,38]. Rather than optimizing an image, Ulyanov et
al. [38] propose Texture Net, a convolutional generator trained on an exemplar
texture in order to generate texture variants in a single feed-forward pass. Simi-
larly, Shaham et al. [35] utilize generative adversarial networks (GANs) to create
images including textures by learning on a single example. Recently, the works of
Houdard et al. [12,13] use optimal transport from local exemplar texture patches
for detailed texture synthesis, and demonstrate applying this technique on both
optimizing a noise image and training a generative model. On the other hand,
Mordvintsev et al. [28] rely on neural cellular automata for high-fidelity texture
generation.

Other studies have proposed deep generative models to synthesize multi-
ple types of textures [2,22,23,31,32]. For instance, PSGAN [2] is an extension
of GAN that can generate different types of image textures, and interpolate
between samples. Lin et al. [23] uses a similar approach by building on top of
StyleGAN-2 and integrating a texton broadcasting module for a more accurate
and broader synthesis of textures. Lately, several works have introduced text-
to-image models [31–33] that are trained on large image datasets [34], allowing
near-universal texture synthesis by simply inputting text. With textures syn-
thesis having advanced over the past several years, this study investigates how
these methods can be integrated into material texture synthesis for product
design conceptualization.

2.2 3D Texture Transfer

There has also been a line of research that deals with synthesizing and applying
textures to 3D shapes by inputting images [14,27,40], 3D shapes [43], or text
[6,16,17,25]. Initial studies [3,40] develop pipelines to extract texture patches
from input images of objects and map them onto untextured 3D models. Using
neural networks, other studies propose differentiable renderers [5,19,24] that
have demonstrated 3D texture transfer from a single image of an object while
also reshaping the 3D model accordingly. Similarly, 3DStyleNet [43] trains two
neural networks to transfer textures from a source 3D model to a target model,
while also reshaping the target. With a focus on furniture, Hu et al. [14] devise
a pipeline of neural networks that are trained to semantically transfer material
textures from an image onto corresponding parts of a 3D model. Studies that
focus on interior scenes enable transferring materials from an interior image to
a 3D room [42] and between 3D interior scenes [29].

With the introduction of CLIP [30], there has also been an emergence of
methods for texturing 3D objects using textual descriptions. ClipMatrix [16]
textures an SMPL 3D model according to a text prompt by using differentiable
rendering and minimizing a loss between the embeddings of the 3D rendering
image and the input text. Succeeding works like Text2Mesh [25] and TANGO
[6] also utilize differentiable rendering to texture 3D meshes while also adjust-
ing their topology to match the input description. The work of Jin et al. [17]
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performs semantic style transfer onto 3D indoor scenes by also using natural
language. Despite these methods being able to perform language-guided texture
transfer, most of them use differentiable rendering which is time-consuming and
unsuitable for quick ideation during product design conceptualization.

3 TextureAda

We adopt a novel texture synthesis method called TextureAda, which uses a
modified Texture Net [38] generator and a pre-trained VGG-19 [36] encoder.
TextureAda also involves another technique: adaptive instance normalization
(AdaIN). Adaptive instance normalization was proposed by Huang et al. [15]
for style transfer in order to transfer styles from an arbitrary number of image
sources in real-time. This is done by normalizing the intermediate features of
an image generator according to the features of a style image that is encoded
using the VGG-19. While the study of Huang et al. [15] performs AdaIN at a
single layer of their generator, in this study, AdaIN is performed several times at
multiple layers of Texture Net in order to create higher-fidelity image textures.

3.1 Network Architecture

TextureAda uses a Texture Net generator and VGG-19 encoder for texture syn-
thesis, where their architectures are shown in Fig. 2.

Fig. 2. Overview of TextureAda. TextureAda uses the Texture Net architecture and
performs adaptive instance normalization from multiple layers of a pre-trained VGG-
19.

The inputs to TextureAda are a tensor Z, which contains noise images z0 to
zn, and a reference texture image t. t is inputted into the VGG-19 to encode its
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features, and the noise images of Z are sequentially inputted into Texture Net.
We use 6 noise images as the generator’s input and set the largest noise image
of Z to 256 square pixels. AdaIN is then performed between the intermediate
features of Texture Net and the extracted features from VGG-19. AdaIN is
calculated using the following equation,

x′ = σ(y)
(

x − μ(x)
σ(x)

)
+ μ(y) (1)

where x represents the intermediate features in TextureAda at a certain layer,
y represents the features of texture t extracted using VGG-19 at a certain layer,
and x′ represents the outputted intermediate features after the operation. μ and
σ calculate the mean and standard deviation, respectively. Specifically, we use
the features from VGG-19 layers ’relu1 2’, ’relu2 2’, and ’relu3 4’. The output
to TextureAda is a generated image texture t′ that aims to resemble reference
texture t.

In order to perform multiple AdaIN operations, the following modifications
are made to the Texture Net architecture:

• All instance normalization layers are removed.
• AdaIN is performed after each upsampling block or convolutional block in

Texture Net.
• For all convolutional blocks, the number of hidden features is increased from

multiples of 8 to multiples of 64.

3.2 Training Details and Implementation

TextureAda is trained for 500 epochs using the Adam optimizer [20] at a fixed
learning rate of 1e−4. The covariance matrix loss [39] is used as the training loss
function. In calculating the loss, we utilize the pre-trained VGG-19 to extract
the features of both the real and generated image textures at layers ‘relu1 2’,
‘relu2 2’, ‘relu3 4’, and ‘relu4 4’. The system was implemented using the PyTorch
deep learning library.

4 Experiments

We evaluate TextureAda based on its performance in texture synthesis with
previous methods and show how it can be applied in the material texturing of
3D models of products during design conceptualization. For texture synthesis,
TextureAda was compared with the following benchmarks: Texture Nets [38],
the feed-forward style transfer network [18], and the vanilla AdaIN network [15].

All texture synthesis methods were tested on two datasets: a dataset of tex-
tures of furniture and a subset of the Describable Textures Dataset [7]. The
furniture textures dataset (FTD) is comprised of 35 material texture images
that were segmented from images of furniture scraped from the internet. The
entire Describable Textures Dataset (DTD) [7] comprises 5640 in-the-wild tex-
ture images across 47 categories. However, for this experiment, we only used
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categories that contain material textures such as the “braided” and “woven”
categories, and removed duplicates and images that were not material textures
(e.g., faces). The DTD subset that was used in this experiment contains 319 tex-
ture images across 17 categories. All images were resized to 256×256 pixels. The
other benchmark methods were trained using their respective configurations.

To quantitatively compare the quality of the generated textures, the Single
Image Frechet Inception Distance (SIFID) metric [11,35] is used. SIFID measures
the similarity between the features of a generated image texture and real image
texture that are encoded using the Inception Network [37].

Lastly, we propose applying texture synthesis methods such as TextureAda
in texturing 3D models for product design conceptualization. For the scenario of
choosing materials for furniture design, we transferred TextureAda’s generated
textures onto 3D models of chairs and tables from ShapeNet [4]. All chair and
table models were manually segmented by their parts. The Blender API was
used in applying the textures and rendering the 3D models.

5 Results and Discussion

For evaluating TextureAda with other benchmarks on texture synthesis, we show
visual comparisons of their generated textures and also their average SIFID
scores. For the furniture textures dataset, a sample of the texture images is in
Fig. 3. Visually, the textures from our proposed method, TextureAda, resemble
much more closely to the ground truth textures in comparison to the other meth-
ods and are of higher fidelity. For instance, in row 1 of Fig. 3, the textures of the
vanilla Texture Net and AdaIN network contain discolorations while the texture
of our method does not. Additionally, in row 4, the textures of both the Tex-
ture Net and AdaIN network exhibit blurs in some regions, while our method’s
texture does not. The textures created by the Feedforward Style Transfer net-
work do not show any visual artifacts, our method creates much more detailed
textures. It is also worth mentioning that TextureAda does not exactly copy the
ground truth textures, yet is able to capture their patterns and styles.

For the DTD subset, we present a visual comparison of generated textures
in Figs. 4 and 5. All methods can perform texture synthesis on non-stochastic
textures. Interestingly in Fig. 5, for textures that repeat by larger image patches
such as in rows 2 and 3, and the non-stochastic texture in row 4, our method is
shown to learn local patterns and repeat them, whereas the other methods are
not able to. However, some textures from TextureAda exhibit artifacts such as
color jitters on rows 1, 2, and 4, and also lines on row 3; thus, there can be room
for improvement in TextureAda.

We also present the SIFID scores for texture synthesis on both the furniture
textures dataset and Describable Textures Dataset in Tables 1 and 2, respec-
tively. Our method outperforms all previous methods based on the average SIFID
of all generated textures from both datasets.

Lastly, to show the application of our method in material texturing for prod-
uct design conceptualization, we semantically apply the generated textures of
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Ground Truth TextureAda (Ours) Texture Net [38] Feedforward Network [18] AdaIN Network [15]

Fig. 3. Visual comparisons of generated textures from the furniture images dataset
between our method and previous deep texture synthesis methods.

Table 1. Texture synthesis performance comparisons on the furniture images dataset
based on average SIFID. The bolded value indicates the method with the lowest score
which indicates a higher similarity to the ground truth texture.

Deep Texture Synthesis Method Average SIFID

TextureAda (Ours) 0.00009

Texture Net [38] 0.16270

Feedforward Network [18] 0.00014

AdaIN Network [15] 0.20840

TextureAda from the furniture images dataset onto chairs and tables from the
ShapeNet dataset. Figures 6 and 7 show combinations of similar and drastically
different textures mapped onto parts of different types of chairs, respectively.
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Ground Truth TextureAda (Ours) Texture Net [38] Feedforward Network [18] AdaIN Network [15]

Fig. 4. Visual comparisons of generated textures from the subset of the Describable
Textures Dataset between our method and previous deep texture synthesis methods.
The textures shown are from the “braided” and “bumpy” categories.

Table 2. Texture synthesis performance comparisons on the subset of the Describable
Textures Dataset [7] based on average SIFID. The bolded value indicates the method
with the lowest score which indicates a higher similarity to the ground truth texture.

Deep Texture Synthesis Method Average SIFID

TextureAda (Ours) 0.000079

Texture Net [38] 0.000105

Feedforward Network [18] 0.000145

AdaIN Network [15] 0.000192
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Ground Truth TextureAda (Ours) Texture Net [38] Feedforward Network [18] AdaIN Network [15]

Fig. 5. Visual comparisons of generated textures from the subset of the Describable
Textures Dataset between our method and previous deep texture synthesis methods.
The textures shown are from the “lacelike”, “paisley”, and “woven” categories.
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Fig. 6. 3D part-based texture transfer using similar-looking textures created by Tex-
tureAda.

Fig. 7. 3D part-based texture transfer using different textures created by TextureAda.
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6 Conclusion and Future Work

TextureAda is a novel texture synthesis method that is based on Texture Net
[38] and performs adaptive instance normalization (AdaIN) [15] between multiple
layers of Texture Net and a pre-trained VGG-19 [36] with the goal of creating
higher-fidelity textures. Texture synthesis experiments on two datasets show
that TextureAda beats previous methods visually and based on SIFID. Most
importantly, we show how it can be potentially adopted for ideating in product
design conceptualization by applying generated material textures to 3D models
of furniture.

For future work, in order for TextureAda to be usable by designers, we plan
to incorporate it into an application that allows designers to further post-process
the generated textures such as changing their color and pattern sizes and also
removing undesirable textures. We believe that utilizing deep texture synthesis
methods like TextureAda would ease the task of quickly ideating and choosing
material textures for 3D models in product design conceptualization.
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