
Supporting the acquisition and modeling of requirements in software
design

Yasuyuki Sumia,* , Koichi Horib, Setsuo Ohsugac

aATR Media Integration and Communications Research Laboratories, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
bResearch Center for Advanced Science and Technology, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904, Japan

cSchool of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received 28 July 1998; accepted 17 August 1998

Abstract

This paper describes a system for supporting the construction of softwarerequirement models, which are initial computable models
representing users’ requirements in software design. The system principally consists of two components, a system for aiding the formation of
requirement concepts by visualizing a user’s thought space, and a knowledge-based system which automatically assembles the ascertained
requirement concepts into a requirement model. The system extracts reusable components of a requirement model, corresponding to the
users’ abstract requirement concept, from a store of similar past cases. The components are then automatically arranged using heuristic
reasoning. By using the system, users can make their requirement concepts more mature, and simultaneously get computable requirement
models as by-products.q 1998 Elsevier Science B.V. All rights reserved.

Keywords:Modeling; Software requirements acquisition; Supporting idea formation

1. Introduction

In this paper, we propose a system for aiding the
construction ofrequirement modelsin software design.

Numerous studies on intelligent support for software
development, such as automated programming systems
[1, 2], have been conducted. This has caused the main
focus of software development activities performed by
humans to shift to the description ofwhat computers are
required to solve as opposed tohowcomputers are to solve
a particular problem [3]. At the same time, because of the
need to apply computer systems to a wide variety of
domains, it has become essential to integrate target domain
experts, i.e. the systems’ users, along with computer
experts, into the process of determining specification of
requirements. However, it is very difficult to ascertain a
system’s complete requirements from users who are not
experts in software development, let along transform these
into formal specifications in the software design. Therefore,
an intelligent supporting environment for establishing the
specifications of requirements is currently being actively
sought [4].

Hori and Ohsuga [5] highlighted the importance of aiding
the articulation of requirements in the intelligent support for
software development. Consequently, they proposed that
software development should be considered a mediation
of two self-organizing worlds, that is, the metal world,
where the user formulates his/her ideas, and the computa-
tional world, where he/she formalizes the ideas. The orga-
nization of both worlds should proceed concurrently.
Consequently, an environment that aids both the articulation
of its users’ requirements and the structuring of those
requirement concepts into a computable model concurrently
would be indispensable.

In this paper, we propose a system for aiding the
construction of a software requirement model through
the integration of two techniques, that is, a method for
the support of idea formation and knowledge-based auto-
mated modeling. The former aids users in articulating
their requirements, while the latter automatically struc-
tures these requirement concepts into a tentative require-
ment model to be interpreted later by a computer. The
system extracts reusable components of a requirement
mode, corresponding to the users’ abstract requirement
concept, from a store of similar past cases. The compo-
nents are then automatically arranged using heuristic
reasoning.

Knowledge-Based Systems 11 (1998) 449–456

KNOSYS 1169

0950-7051/98/$ - see front matterq 1998 Elsevier Science B.V. All rights reserved.
PII: S0950-7051(98)00078-1

* Corresponding author. Tel.:1 81-774-95-1401; Fax:1 81-774-95-
1408.



2. System overview

Fig. 1 illustrates the architecture of the system proposed
in this paper. The intended user for the system is someone
researching advanced information engineering, and who
wants to build a software prototype related to his/her emer-
ging ideas. As such, the intended user need not have estab-
lished concrete requirements for the software, and the target
domain need not be well-structured. The user can write
down fragments of his/her software requirements on
memos and build his/her requirement space using an idea
formation support tool. This tool should be able to visualize
the requirement space, to aid in the analysis and acquisition
of appropriate requirements. Consequently, the knowledge-
based system generates a tentative requirement model
according to the current requirement space by exploiting
such knowledge as past software designs. This enables the
user to recognize and analyze his/her own requirement
concepts as a structured model. The user is also able to
modify the requirement space using the tool, and observe
all changes in the requirement model caused by the modifi-
cation. Repeating this process makes the requirement
concepts mature, and simultaneously leads to a by-product,
that is, a computable requirment model.

The resulting pairs of the requirement space and its model
are added to the case-base for later use. Namely, the case-
base in the proposed system matures according to its users
and fields. To increase the reusability of products, in not

only the lower stream of software development, but also
in the upper one, claims have been made stating that
domain-dependent analysis and modeling are necessary
[6]. The method proposed in this paper can serve as an
answer to these claims.

A brief explanation follows for therequirement spaceand
requirement modelas proposed for this system.

• A requirement space is a metric space which enables a
user to visualize requirement concepts and their relation-
ship to the user’s origanal ideas, mainly consisting of
abstract and domain-dependent expressions. This space
also plays an important role in mediating between the
well-structured world of computer languages and the
abstract world of concepts.

• A requirement model is an initial software model, which
aids in the formulation of a user’s requirements to
succeeding phases such as details specification and
implementation. This model is expressed as a network
of entities, and relationshipsamong the entities; each
relationship object has a frame structure with several
slots and fillers, i.e. entities. Such a requirement model
represents a target world wherein the user’s problems and
requirements lie, in addition to containing functions or
data structures which are expected to be implemented.

3. Forming ideas as a requirement space

The authors’ research group has proposed several compu-
ter tools for aiding idea formation by visualizing snapshots
of the topological structure of a user’s thought space1 using
statistical methods [7–10]. These tools have been success-
fully applied to personal idea formation, knowledge acqui-
sition, human communications support, information
retrieval, and so on.

The system proposed in this paper employs one of these,
namely CSS (communication support system) [10]. CSS
visualizes the structure of a user’s thought space by auto-
matically mapping electronic memos, calledtext-objects,
into a two-dimensional metric space according to the
number of commonkeywordsdeclared in the text-objects.
The structure of the space is statistically determined by a set
of text-objects with weighted keywords as multivariate data:
two axes of the space correspond to two principal eigenvec-
tors of the data. Intuitively, in the space, a pair of text-
objects with more common keywords is located closer
together and these keywords are mapped around the pair.

Fig. 2 shows an example of CSS being used in forming
ideas for the development of new software. The main
window in Fig. 2 depicts the metric space, which we call
the requirement space in this paper. The rectangular icons in
the space indicate text-objects containing requirements

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456450

Fig. 1. The architecture of a system for aiding in the construction of a
requirement model in software design.

1 Here, we define athought spaceas a mental space consisting of frag-
ments of ideas or knowledge and the relationships among them in a thought
process.



concepts, and the oval ones, their keywords. CSS does not
restrict the content of texts into text-objects; hence, users
can exploit informal documents written during routine
research as well as the upper stream of software develop-
ment, namely, research memos and notes pertaining to
abstract ideas.

CSS is implemented with the X Window System on a
UNIX workstation, and offers a graphical user interface
with multiple windows. CSS manages a data table, which
contains text-objects, keywords, and weight values given to
pairs of text-objects and keywords. The designating of
keywords and their weights is determined by the users.
The users can change the data set according to their own
thoughts. Whenever a user instructs CSS to reconfigure the
space, it calculates and shows the new configuration accord-
ing to the current data.

CSS enables users to reconsider their own ideas and
requirements from a global perspective. Users can recognize
several modules of their requirements by viewing clusters
emerging in the space reconfigured by CSS, and grasp the
topological relationships between these modules.

Since CSS can store an increasing number of results in its
database, users can share and reuse them in the development
of new ideas. Consequently, they can use CSS to visualize
the conceptual structure of existing software. These ‘past

requirement spaces’ can be used as tentative spaces at the
beginning of developing new ideas by providing better orga-
nized spaces containing both concrete ideas as well as
abstract ones. Moreover, such a CSS database can be a
domain-dependent repository of collaborative work by
groups of people.

4. Structuring requirement concepts into a computable
model

4.1. Knowledge-based modeling approach

In the previous section, we briefly explained a method to
ascertain requirements with CSS. In order to exploit and
improve the requirements in the lower stream of software
development, we need to transform them into a requirement
model described in a computational manner.

Structuring requirement concepts into a requirement
model is a repetitive process of model transformation
which consists ofinitial model building, model evaluation
andmodel modification, i.e. a typical process of non-deter-
ministic problem solving [11]. It is rare for the ascertained
requirements to match an earlier requirement model; hence,
there is no alternative but to gradually improve a model to

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456 451

Fig. 2. Example of using CSS to form a requirement space.



meet the requirements, using a variety of knowledge, by
trial and error.

In this paper, we mainly focus on the automation of
generating the initial model prior to the repetition of
model evaluation and modification. Namely, the goal is to
automate the construction of a prototype as a tentative
model for analysis, evaluation and modification, in order
to arrive at a requirement model meeting the requirement
concepts externalized in the requirement space of CSS.

We adopt a knowledge-based approach exploiting the
information from previous cases, namely, pairs of a require-
ment space and its requirement model produced in previous
cases of software development. The knowledge-base stores
various kinds of modeling knowledge which are utilized for
the prototyping and assessment of requirement models to
meet the users’ requirement spaces. We perform implemen-
tation to describe the task knowledge for prototyping the
models as well as the operational knowledge for evaluating
them such as: model generation, the detection of unnoticed
relationships between entities in models belonging to differ-
ent cases, the extraction of parts from a model based on
certain viewpoints, and the verification of semantic
constraint satisfaction of models. Among them, we espe-
cially describe the task knowledge for model generation
later.

To describe and utilize the knowledge, we employ a
knowledge-processing system called KAUS (knowledge
acquisition and utilization system) [12] which was devel-
oped at the University of Tokyo, Japan. KAUS is a declara-
tive language for knowledge representation and reasoning,
which is suitable for describing and utilizing structured
information. In this study, we use KAUS for: (1) the
description, management and operation of a tentative
model inferred and previous models in the case-base; (2)

the description and utilization of modeling knowledge; and
(3) an inference engine for modeling.

To provide users with tentative models that correspond to
their requirement spaces, we implement the following auto-
mated tasks for model generation:

• Extracting, from past requirement models, components
of a requirement model that may meet requirement
concepts as they emerge in a user’s requirement space.

• Composing a tentative requirement model, by selection
and modification, that corresponds to the entire require-
ment space from those parts.

The following sections describe these tasks.

4.2. Extracting partial requirement models from past cases

This section describes the implementation of a task to
extract a partial requirement model expressed in terms of
previous cases, meeting the requirement concepts that
emerge in a user’s requirement space. Because of the
comparatively abstract nature of expressions, keywords
which indicate the user’s requirements in the requirement
space are rarely expressed in the same terms as objects
(entities and relationships in the requirement models) in
past models. For this reason, we have developed a method
to indirectly extract components of a model from past
models by exploiting past requirement spaces as mediators
between abstract requirement spaces and concrete require-
ment models explicitly expressed in past cases.

The procedure for extracting a partial requirement model
is as follows (refer to Fig. 3):

1. Suppose a user recognizes a requirement concept, such as
‘visualizing the structure of…is necessary’ by noticing a
co-occurrence of the two keywords ‘visualization’ and
‘structure’ in his/her requirement space, and he/she then
wished to obtain a structured requirement model from
past similar cases matching the requirement concept.

2. Past cases in which the keywords ‘visualization’ and/or
‘structure’ exist in the requirement space are selected,
and the keywords mapped around these words are then
activated. In Fig. 3, the keywords ‘object’, ‘metric
space’, and ‘mapping’ are activated.

3. In the case objects (entities or relationships) use the same
expressions as the keywords activated in step 2, the part
containing the objects and the links connected to these
are extracted.

4. The user judges whether the partial models extracted
from several past cases have a sufficiently strong rela-
tionship with his/her requirement concept or not.

This procedure is implemented as an automatic program
with KAUS, whose input is a set of keywords indicating a
user’s requirement concept and a threshold value for the
propagation of activation, and whose output is a set of
names of the past cases selected and the partial requirement
models extracted.

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456452

Fig. 3. Extraction of a partial model matching a user’s requirement concept
from past cases.



Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456 453

Fig. 4. Example of partial requirement models extracted from past cases.

Fig. 5. Example of an automatically-generated requirement model.



Fig. 4 shows an example of the extraction of partial
models form several past cases. The window on the right
side is the requirement space being constructed by a user
using CSS. In this case, the user pays attention to the
keywords ‘individual variation’, ‘terminology’ and ‘learn’,
and extracts requirement model parts corresponding to this
keyword set from past cases. The window on the left side
displays the states of inferences determined by KAUS. The
results inferred by KAUS are output as partial models
described with KAUS, and visualized with a graphical struc-
ture browser. In this example, four cases were found from
which partial models were extracted. Users can utilize the
results for the construction of their requirement model by
selecting any suggestion from the system and modifying it.
Even if the results themselves are not reusable, they may be
useful for prototypes to further analyze their requirements.
It can be said that the system enables users to obtain a
concrete partial requirement model from their requirement
concept even with abstract expressions.

4.3. Composing a tentative model from extracted parts

We also utilized an alternative method to compose new
tentative models corresponding to a user’s entire require-
ment space from partial models extracted from multiple past
cases.

The task examined in the previous section was merely to
extract parts from past cases, while the task to be described
here is to synthesize the parts extracted from multiple cases.
The former guarantees the consistency of the context inside
each result, while the latter does not do so in the model as a
whole. Conversely, we can say that the latter task has the
potential to cause a collision of multiple contexts, which
may lead tothe emergence of a new structure.

When solving problems in composition, the avoidance of
conflict in a multiple structure is an important issue. Here,
we need to resolve any inconsistency that results from the
synthesis of components from different sources. For
instance, in the case where a certain relationship object is
accidentally extracted from multiple cases with different
frame structures, one must be selected. Such a case can be
observed in Fig. 4 where an object named ‘move’ is
extracted from two different contexts. The implemented
task can avoid a conflict of this sort by implementing a
plausible heuristic criterion, for example, selecting the
candidate that has the greatest number of slots of the same
expression as any keyword in the user’s requirement space.

Fig. 5 shows an example of a requirement model auto-
matically generated according to the requirement space
shown in Fig. 2. This is the result of extracting several
partial models from multiple past cases which are inferred
to meet the requirement space, synthesizing these models
using several heuristics, and visualizing them with a struc-
ture browser. In this way, users can instantly obtain a tenta-
tive requirement model by simply building their
requirement space with CSS. This enables them to carry

out requirement acquisition, analysis, and modeling,
concurrently.

5. Experiments and evaluation

5.1. Experimental use for a new software design

One of the authors experimentally evaluated our system
to externalize his ideas on a software design concerned with
a new research topic and to make a prototype of its require-
ment model.

First, he vaguely supposed ‘a database system dealing
with art’ as his subject. Then, he wrote memos on fragmen-
tary ideas and requirements for that system, put them into
six text-objects, and structured them as an externalized
requirement space using CSS. Fig. 2 shows a snapshot of
the space.

Next, he extracted and evaluated partial models, from
previous requirement models, using the method described
in Section 4.2 to obtain requirement models meeting
requirement concepts emerging in the requirement space
(see Fig. 4). At that time, viewing the requirement spaces
of past cases made it easier for him to understand their
contexts with which the extracted requirement models
were formed, and this was useful for him to reconsider his
requirements. Moreover, the simultaneously extracted
partial models made him aware of the relationships among
the different cases and supported his analogical thinking. In
this experiment, more than 10 past cases were gathered and
their requirement spaces were prepared using their require-
ment specification documents as cases stored in the case-
base. In order to confirm the system behavior for modeling
using previous models, four requirement models of cases
selected from them were formed.

Moreover, the user tried to prototype an initial require-
ment model using knowledge on past cases; by the method
described in Section 4.3. Fig. 5 is the result. The result
enabled him to notice contradictions in the requirements
and the inadequacy of term definitions; and hence encour-
aged him to restructure the requirement spaces using CSS.
Additionally, by finding out that some parts of his require-
ment space did not have corresponding parts in the proto-
typed model, he realized that these parts were potentially
original ideas, which were not seen in previous cases.

Note that users of our system can reuse partial require-
ment models extracted from past cases while being aware of
their contexts; since our system provides users with not only
computable models of past cases selected by simple
keyword matching but also their corresponding requirement
spaces, which have representations close to the users’
mental representation and which mediate between the
users’ mental thoughts and the computational requirement
models.

Moreover, collision among the contexts of past cases
encourages new ideas and facilitates further evolution of

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456454



the users’ requirement spaces. The externalized words and
concepts in the requirement spaces and models, by repeating
such a cycle, are an invaluable repository for groups of
people engaged in a collaborative project as a domain-
dependent ontology.

5.2. Application to the evaluation of existing software
specifications

In order to evaluate the role of requirement models in the
development and management of software by groups, we
performed the following experiment. In a research labora-
tory to which the authors had previously belonged, informa-
tion services were provided using the world-wide web
(WWW). Plans were being made to develop another
program to manage the creation of home pages, to be
made available to multiple users even outside their local
network of computers. Features of the case were as follows:
computer systems in the laboratory were administrated by
multiple users; the software specifications were often modi-
fied because the software used a developing technology,
namely, the WWW; and it was difficult to grasp the whole
concept of the software and estimate its behavior because
the software was open to computer networks.

First, we formed a requirement model from a require-
ment specification document written by a designer of the
software. His requirement concepts were already clear
since he was an expert programmer; hence, it was not
hard to directly build the requirement model. By using
the requirement model together with the original specifi-
cation document, mutual understanding and the sharing
of ideas and requirements of the software in the group were
facilitated.

Inconsistencies in the software requirements not noticed
before the building of the requirement model were
observed, because the requirement model made it easier to
grasp the data flow and the mutual dependencies among the
functional modules. Modification of the requirement speci-
fications was done by operating the requirement model with
KAUS. This enabled the systematic modification of the
requirements, for example, the system automatically
removed a data structure no longer referred to by any func-
tional module due to the removal of an unnecessary func-
tional module.

It is certainly tiresome to form requirement spaces and
models for individual projects. However, computerization
of the upper stream of design, with methods like the one
proposed in this paper, is inevitable for decreasing human
errors during the creation of requirement specifications and
the development and maintenance of a large-scale system
by groups, which cannot be done by individuals. We believe
the accumulation of machine-operatable records and know-
how concerning past work brings benefits to a global cycle,
including the development of similar systems and the modi-
fication of existing systems.

6. Concluding remarks and future work

In this paper, we described a system for aiding the
construction of software requirement models by integrating
techniques that support idea formation and knowledge-
based modeling. This system enables users to effectively
reutilize by-products produced during software develop-
ment and research work such as informal documents,
which would have otherwise been unusable.

Once a user’s requirements have been sufficiently
assembled in terms of a comptable model, they can be
semi-automatically transformed into executable program
code using existing automated software design technology
(e.g. Ref. [13]). This means that the methodology proposed
in this paper can shift the balance of the interface between
humans and machines in software development toward the
human side.

The approach described in this paper can be classified in
terms of experience-based paradigms, such as analogical
reasoning and case-based reasoning (CBR). These methods
generally make the implicit, explicit, by allowing us to
recognize something that we would not have encountered
before by associating it with something we had. We also
observed such an effect in the system proposed in this paper,
i.e. users of the system can extract a concrete representation
of requirement models from their abstract requirement
spaces, and then recognize their own requirements more
explicitly.

One of the important advantages of experience-based
paradigms is that they store and provide a process model
for the problem as well as for the solution. Although both
CBR and expert systems rely on the explicit symbolic repre-
sentation of experience-based knowledge to solve a new
problem, expert systems only use generalized heuristics,
i.e. a compilation of experiences. On the other hand,
CBR’s representation includes the justification of the
solution or the requirements of the problem as well as
its solution [14]. We believe that information represent-
ing the process for solving a problem is essential for
effectively reusing experience-based knowledge, as well
as its solution.

The method presented in this paper is a general paradigm
for conceptual design, which is not limited to software
design. For future work, we intend to: (1) apply and improve
the paradigm for general usage by integrating it with other
weak and general technologies; and (2) specify it for parti-
cular tasks, such as software design, by adding more sophis-
ticated knowledge and methods. Related to point (1) above,
Ref. [15] applies a method for visualizing the structure of
conceptual spaces to daily conversations in communities for
sharing knowledge and helping the mutual understanding
among people engaged in collaborative work. For point
(2), we need to compile and represent more sophisticated
modeling knowledge and store experiences in a case-base
according to the specific domain. Empirical experiments
will also be indispensable for this.

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456 455



Acknowledgements

The authors would like to thank Hiroyuki Yamauchi, who
has been developing KAUS, for his valuable comments and
encouragement. The authors would also like to thank Ryuta
Ogawa for implementing CSS.

References

[1] C. Rich, R.C. Waters (Eds.), Readings in Artificial Intelligence and
Software Engineering, Morgan Kaufmann, 1986.

[2] M.R. Lowry, R.D. McCartney (Eds.), Automating Software Design,
AAAI Press/MIT Press, Cambridge, MA, 1991.

[3] A. Borgida, S. Greespan, J. Mylopoulos, Knowledge representation as
the basis for requirements specifications, IEEE Comp. 18 (4) (1985)
82–90.

[4] D.A. White, The knowledge-based software assistant, a program
summary, The 6th Annual Knowledge-Based Software Engineering
Conference, IEEE Computer Society Press, 1991, pp. 2–6.

[5] K. Hori, S. Ohsuga, Computer-aided thinking for software develop-
ment, Proceedings of the 2nd Pacific Rim International Conference
On Artificial Intelligence, Seoul, 1992, pp. 203–208.

[6] G. Arrango, R. Prieto-Diaz, Introduction and overview, domain
analysis concepts and research directions, in: R. Prieto-Diaz, G.

Arrango (Eds.), Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press, 1991, pp. 9–26.

[7] K. Hori, A system for aiding creative concept formation, IEEE Trans.
Systems Man Cybernetics 24 (6) (1994) 882–894.

[8] Y. Sumi, K. Hori, S. Ohsuga, Computer-aided thinking by mapping
text-objects into metric spaces, Artif. Intell. 91 (1) (1997) 71–84.

[9] M. Sugimoto, K. Hori, S. Ohsuga, Method to assist the building and
expression of subjective concepts and its application to design
problems, Knowledge-Based Syst. 7 (4) (1994) 233–238.

[10] Y. Sumi, R. Ogawa, K. Hori, S. Ohsuga, K. Mase, Computer-aided
communications by visualizing thought space structure, Electronics
Commun. Japan Part 3 79 (10) (1996) 11–22.

[11] S. Ohsuga, Framework of knowledge-based systems — multiple
meta-level architecture for representing problems and problem-
solving processes, Knowledge-Based Syst. 3 (4) (1990) 204–214.

[12] H. Yamauchi, S. Ohsuga, Modelling objects by extensions and inten-
tions — a theoretical background of KAUS, in: S. Ohsuga et al.
(Eds.), Information Modelling and Knowledge Bases III, IOS Press,
1992, pp. 160–173.

[13] C. Li, S. Ohsuga, A meta knowledge structure for program develop-
ment support, Proceedings of the 5th International Conference On
Software Engineering and Knowledge Engineering, 1993.

[14] M.L. Maher, A.G. de Silva Garza, Case-based reasoning in design,
IEEE Expert 12 (2) (1997) 34–41.

[15] Y. Sumi, K. Nishimoto, K. Mase, Personalizing shared information in
creative conversations, Proceedings of the IJCAI-97 Workshop on
Social Interaction and Communityware, Nagoya, 1997, pp. 31–36.

Y. Sumi et al. / Knowledge-Based Systems 11 (1998) 449–456456


