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ABSTRACT
Communicative hand gestures play important roles in face-
to-face conversations. These gestures are arbitrarily used
depending on an individual; even when two speakers narrate
the same story, they do not always use the same hand gesture
(movement, position, and motion trajectory) to describe the
same scene. In this paper, we propose a framework for the
classification of communicative gestures in small group inter-
actions. We focus on how many times the hands are held in
a gesture and how long a speaker continues a hand stroke,
instead of observing hand positions and hand motion tra-
jectories. In addition, to model communicative gesture pat-
terns, we use nonverbal features of participants addressed
from participant gestures. In this research, we extract fea-
tures of gesture phases defined by Kendon (2004) and co-
occurring nonverbal patterns with gestures, i.e., utterance,
head gesture, and head direction of each participant, by us-
ing pattern recognition techniques. In the experiments, we
collect eight group narrative interaction datasets to evalu-
ate the classification performance. The experimental results
show that gesture phase features and nonverbal features of
other participants improves the performance to discriminate
communicative gestures that are used in narrative speeches
and other gestures from 4% to 16%.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Feature
evaluation and selection; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding—Motion

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Face-to-face conversations represent a fundamental social

interaction. The automatic understanding of face-to-face
conversational scenes by using the multimodal signals of par-
ticipants assists conversation analyses [1], the implementa-
tion of conversational artifacts [20] including conversational
agents [4]. Toward this goal, many studies focus on spo-
ken language recognition from speech signals and nonverbal
behavior recognition from visual signals. In nonverbal com-
munication, nonverbal behaviors have established a key role
in the formation, maintenance, and evolution of many fun-
damental social constructs. From this background, the anal-
ysis of automatic nonverbal behaviors in face-to-face inter-
actions has been extensively researched. The voice tone and
prosody are typical aural features that are useful in under-
standing the emotional state and agreement as well as turn
taking, scene detection, and floor detection, among others
[3]. Eye gaze, head direction, and head gestures are used to
identify addressees and backchannel information [10], [21],
[18].

On the other hand, extensive researches have been con-
ducted regarding hand gestures in Social-linguistics and Psy-
cholinguistics. However, in comparison to other nonverbal
behavior (prosody, gaze, head gestures), there are fewer re-
searches on the autonomous analysis and modeling of hand
gestures used in small groups or multiparty conversations.
Gestures play roles in communications at various times dur-
ing a conversation. [5] shows that observing gestures is im-
portant for the tracking floor control structure.

Our goal is to automatically analyze the roles of hand
gestures in small group conversations and explore effective
features that discriminate these roles. For this purpose, we
set the following hypothesis. If a speaker’ s gestures have vi-
sual significance to a listener or other participants, nonverbal
behaviors of other participants (e.g., gazing at the speaker,
nodding to the speaker) are also important gestures. For ex-
ample, a speaker is likely to use narrative gestures (cospeech
gestures) to make other participants understand them well
if the participants gaze at the speaker. On the other hand,
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Figure 1: Overview of proposed frameworks: We use gesture phase features and contextual feature set from all participants
for gesture modeling. Lower figure shows example of gesture phase features. “prep.”, “ret.” denote preparation phase and
retraction phase, respectively.

spontaneous self-directed gestures or hand motions may also
be used when participants do not gaze at the speaker. In
this paper, we propose an autonomous framework to model
hand gesture patterns used in conversations by using contex-
tual information from other participants. First, we annotate
primitive nonverbal patterns (speech, gesture, head gesture,
and head direction) as binary on/off or three variables by
using pattern recognition techniques.

Figure 1 shows an overview of the proposed framework.
In this setting, the frequency of narrative gestures and their
types are different among groups. This is because differ-
ent speakers using gestures for explanations depend on spe-
cific individuals and may differ even if the speakers narrate
the same episode. For this research, we collect a narrative
interaction dataset where two people narrate a story from
memory to one person. With this data, we can observe the
gestures accompanying the narrative speech (narrative ges-
ture), the self-directed gestures used when the storyteller
does not remember the words, and the gestures of the non-
speaker for interrupting a speaker’s turn. We set a task to
classify the observed gesture patterns as gestures accompa-
nying the narrative speech and other gestures.

Our paper has two contributions. First, the role classifica-
tion of communicative gestures used in natural small group
conversations is an unexplored problem. To our knowledge,
using contextual features for hand gesture classification has
not been addressed. We extract gesture features using the
concepts of gesture phase and contextual features. We show
that the classification of conversational hand gestures can be
improved by considering the behaviors of other participants
in the conversation. After the classification, we discover
all participants’ nonverbal patterns coexisting with gestures
using a probabilistic topic model to analyze how contextual
information from other participants can be used to classify
gesture roles.

2. PREVIOUS WORKS
Our challenge is to classify the communication gestures

used in conversations. Our approach is different from other
gesture recognition approaches in that we use a combination
of the features of three motion phases, coexisting features,
and contextual features of modality patterns from other par-
ticipants. In other words, our research focuses on gesture
recognition and multimodal recognition.

2.1 Psycholinguistic Research for Gestures
There have been many studies on human gestures in psy-

cholinguistic research. McNeill argues that thought is re-
lated to the relationships between language and gestures
that accompany a discourse and that gestures plays a role
in representing a part of language [16]. Kendon describes
a philology of gesture, consisting of gesticulation, language-
like gestures, pantomimes, emblems, and sign language [11].
Kendon also defines gesture phases (preparation, stroke, hold,
and retraction) for composition of communicative gestures.
Communicative gestures are arbitrary and change depend-
ing on the conversational situation and the type of discourse.
In such cases, it is not easy to extract common gesture fea-
tures, such as hand shape, and measure the similarity be-
tween gestures in order to determine a position for clas-
sification. On the other hand, gesture phase features are
composed from the structure of hand movements and are
available for any communicative gestures. Psycholinguistic
studies show that a stroke may be distinguished from other
gesture phases, since a stroke contains maximum informa-
tion. We also show that the hold phase is also an important
feature that discriminates narrative gestures.

2.2 Gesture Recognition Techniques
There are numerous researches on autonomous hand ges-

ture recognition, as summarized in [17][27]. According to
[17], Hand gestures are often the most expressive and fre-
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quently used. They involve the following: (1) a posture:
static finger configuration without hand movement and (2)
a gesture: dynamic hand movement, with or without finger
motion. Recognizing the start and end points of a mean-
ingful gesture pattern from a continuous stream of input
signals and subsequently segmenting the relevant gesture is
a very difficult task due to the segmentation ambiguity and
the spatial-temporal variability involved. To sense hand ges-
tures, wearable sensors such as accelerometer sensors, com-
puter vision devices, and motion capture devices are avail-
able.

To develop the recognition model from gesture patterns,
Hidden Markov Models (HMM) [22], Conditional Random
Fields (CRF) [13], Hidden Conditional Random Fields [26],
Latent Dynamic Conditional Random Fields [19] are used.
The main purposes of these systems are to provide a natural
interface for interactive systems, to control robots, and to
recognize sign language.

On the other hand, there are some existing researches
for conversational gesture modeling and analysis of gestures
by computational approaches. [14] proposed a vision-based
sensing method for analyzing the upper body communica-
tive patterns. In this research, manipulative gestures such
as touching self, and beat gestures used in the job inter-
view data are recognized automatically. [23] presents a mul-
timodal framework for improving the gesture recognition
accuracy. In this framework, alignment of speech act and
hand kinematics is modeled by a Bayesian network and has
been applied to the recognition of gestures of the forecasters
in The Weather Channel broadcasts. [28] address oscilla-
tory gesture recognition in natural conversations. In this
research, oscillatory gestures are detected by using the fre-
quency features of hand motion trajectory signals. They an-
alyze relationships between the phases of speech and oscilla-
tory gestures. [23] and [28] focus on communicative gesture
recognition using multimodal signals (visual and acoustical
features). Our approach uses not only multimodal signal
from a participant making a gesture but also context fea-
tures from other participants.

2.3 Context-based Multimodal Approach
Özyürek shows that speakers change the orientation of

their gestures depending on the location of shared space
[25]. We are inspired by the theory and set hypotheses to
design gesture features in conversations. If speakers wish to
impart meaning to a listener or other participants by using
gestures, speakers will use gestures after other participant
focus their gaze on them, interrupt floor gazing, or make
other participants gaze at them. From this hypothesis, we
decide to use context features from other participants (group
gaze cue, speaking cue) for gesture classification.

[18] shows that using contextual cues (prosodic and lexical
features) related to the speaker improves the recognition ac-
curacy of the listener’s head nods in a dyadic interaction set-
ting. The finding is important for multimodal recognition.
This research focuses on listener’s head gesture recognition
in a dyadic interaction. On the other hand, We focuses on
hand gesture recognition in small group narrative interac-
tions.

3. DATA SETTING
We collect small group narrative interaction datasets to

evaluate our methods. We change the setting of a dyadic

Figure 2: Interaction scene in small group narrative conver-
sation: Two participants are asked to narrate a participant
from memory a cartoon story (Canary Row)

narrative interaction designed by McNeill [15] to that of a
small group narrative interaction.

3.1 Sensing Devices
We used a wearable motion capture system, Motion Anal-

ysis MAC 3D, and wearable accelerometer sensors, ATR
promotion WAA-010 to accurately track hand and head mo-
tions stably (Figure 3). A passive optical system is used as a
motion capture system. Several markers are placed to allow
sensors to triangulate the three-dimensional (3D) position
of a subject among ten cameras. The markers are placed
at head and are listed to sense hand motions. A wearable
accelerometer sensor is attached to the back of the head to
measure head vertical motion including nodding. The mo-
tion capture system captures 120 frame samples per second.
Shure wireless microphones (head set type) are used to col-
lect voice data. We collected synchronized multimodal data
from each participant, such as voice, hand and head move-
ments.

3.2 Narrative Interaction Dataset
In this task, a participant is asked to narrate from memory

a cartoon story to a participant. The name of the cartoon
story is "Canary Row”, and this story has been used for ges-
ture analysis in narative tasks [15] ; In our setting, a group is
composed of three participants, where two participants, who
have watched the video, explain it to the other participant.
Various gestures accompany the narrative speech provided
by the two narrators. By increasing the number of narrators,
we can observe that one narrator helps another to explain
the story and observe the overlapping of gestures between
participants. In this setting, we often observe meaningless
hand motions that are not related to narrative speech; these
are actually self-directed gestures (e.g., a gesture made when
the narrator hesitates during speech).

Figure 2 shows an interaction scene where three partici-
pants sit on chairs without armrests, facing each other. The
three participants were not acquainted with each other and
have never watched the video or listened to the story. We
recruited 24 women participants aged between 20 and 25
years through a temporary employee company to collect the
dataset. We collected 8 sessions dataset in cooperation with
these participants. Average time length of recorded datasets
is 11 minutes (total is 700 minutes). Hand motion data in-
cluding gesture has total 668214 frames.
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Figure 3: Sensors used in this recherches

4. MULTIMODAL PATTERN ANNOTATION
Autonomous annotation is performed on the multimodal

nonverbal dataset. We use the features: utterance, hand
gestures, head gesture and head direction. Our final goal is
to produce an autonomous recognition system. Therefore,
we try to annotate each label by using heuristic combina-
tions of the pattern recognition techniques. Manual annota-
tion for the dataset is also performed to evaluate the accu-
racy of the autonomous annotation by using iCorpusStudio
[24], software environment for browsing and analyzing the
interaction corpus.

4.1 Speech Segment Annotation
Manual annotation setting : Utterance features are im-

portant for recognizing the gestures that accompany speech.
We use standard speech signal processing techniques to de-
tect speaking status as a binary variable to indicate whether
a participant is speaking. Labels were annotated from man-
ual transcriptions by an annotator. We define valid speech
segments as utterances longer than 700 ms.

Autonomous annotation procedure : First, we apply
heuristic rules by using the zero-crossing rate and ampli-
tude to produce speech segment candidates. Second, two
pre-trained Gaussian mixture models (for speech and non-
speech) are used to recognize the speech segments. We use
the following parameters for audio signal processing.

• Signal sampling: 16 kHz
• Frame length: 25 ms
• Frame shift: 10 ms
• Feature vector: 13 Mel-Frequency Cepstrum Coeffi-

cients (MFCCs), 13 ΔMFCCs
We use Julius software for this implementation1 and

4.2 Hand Gesture Segment Annotation
The 3D positions of each marker attached to both lists are

used as gesture features. Therefore, we do not sense finger
movements in this research.

Manual annotation setting : First, we detect the ges-
ture status as a binary variable indicating motion and non-
motion. We define nonmotion segments as the Ąghome po-
sitionĄh in the gesture phase. Here we define a position
where both hands are placed on the thighs as home posi-
tions and annotate nonmotion segments when hands are set
in the home position. All participants set their hands to
this position when they do not make gestures because ta-
bles and armrests are not available. Thus, participants rest
their hands on their thighs when not gesturing. On the other
1Julius: http://julius.sourceforge.jp

Figure 4: Coordinates relative to the center of participants

hand, we define segments that do not meet the criterion for
nonmotion segments as motion segments.

We manually annotate training data to evaluate the hand
gesture recognition algorithm and use it for gesture classifi-
cation tasks in experiments. Labels were annotated by three
individuals including the authors. The gesture annotation
procedure is as follows.

Step1. Annotate nonmotion segments label.

Step2. Annotate start and end points of movements and
labels motion segments between these points.

Step3. Annotate gesture phase labels: stroke, hold to mo-
tion segments.

Step4. Annotate preparation and retraction. The prepara-
tion and retraction phases are very shorter than hold
and stroke phases, so we approximate the former two
phases as a point (The lower figure in Figure 1).

Step5. Combine labels of right hand gesture and that of left
hand one. When both hand gesture labels are equal at
a frame (ex. both label are stroke or hold), the label
is annotated. When both hand gesture labels are not
equal at the frame and one label is annotated as stroke,
The label is annotated as stroke. When these labels
are annotated as home position and hold, the label is
annotated as hold.

Autonomous annotation procedure : For preprocess-
ing, the 3D positions of each marker are transformed into
participant-centered coordinates (Figure 4). The 3D ori-
gin positions are set to the median value between the left
and right shoulders. The original signals from markers are
smoothed by a Gaussian filter of window size 50 ms; any
missing value segments of less than 500 ms are interpolated
by the linear interpolation method.

Hidden Markov Model (HMM) is used to recognize ges-
ture segments and annotate on gesture phases. The HMM
is the ergodic model based on Gaussian probabilities, where
a full-covariance matrix is used for Gaussian function. We
segment 2-s time-series data slices from the dataset of Ses-
sion 1 by shifting one frame, and then collect the training
data. The time-series data of 3D positions and their differ-
entials are used as features to train the HMM. Here we pre-
pare three HMMs for motion segments, nonmotion segments
(home position), and hold phases. Preparation and retrac-
tion phases are recognized by HMMs as the change point
from home position and the change point to home position,
respectively. Finally, Three labels (home position (nonmo-
tion), stroke, hold) are annotated on the gesture dataset.
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Figure 5: Features to detect head direction and head gesture
from sensors

4.3 Head Gesture Segment Annotation
[8] classifies the roles of head gestures. [8] describes that

the head gesture of not only the listener but also the speaker
plays an important role. For example, a speaker nods to
control and organize the interaction. The listener’s nods are
effective features to detect the backchannel context. We also
annotate the head gesture by both a speaker and a listener.

Manual annotation setting : In the proposed frameworks,
we annotate head nodding (vertical head motion) patterns
as binary variables indicating a gesture or nongesture for
each participant. In this narrative task, we do not record
head shake patterns and annotate only vertical head move-
ments including nodding. Labels were annotated by using
video data by an author.

Autonomous annotation procedure : We detect head
gestures by an approach [21] using the discrete wavelet trans-
form (DWT). We use a wearable accelerometer and gyro
sensor (A red rectangle in Figure 5) to extract the features
of head movements. DWT features are calculated for the
X rotation component of a gyro sensor and the X,Z compo-
nents of an accelerometer. For wavelet analysis, we use the
Daubechies wavelet of order 2 (db2) and a decomposition
scale of 1-3. The maximum, mean, and standard devia-
tions are calculated from the coefficients of levels 1 and 2.
These values are used to define the feature vector of ges-
tures. An SVM is trained to classify the feature vector into
two categories: gesture or nongesture. This paper employs
a Gaussian kernel and a soft margin criterion.

4.4 Head Direction Annotation
Detecting gaze patterns is useful to identify addressees.

To detect gaze direction, head pose and head direction are
used for the approximation of gaze direction, and visual fo-
cus of attention in group conversations [7] can be applied
toward the automatic identification of addressees in multi-
party cases. In this research, we also extract head direction
features to detect the visual focus of attention. Although
head tracking from vision remains a challenging task, we
can observe head positions from motion capture sensors and
avoid tracking difficulties.

Manual annotation setting : We annotate head direc-
tion patterns as binary variables indicating whether a par-
ticipant is facing the right or left. Labels were annotated
from manual transcriptions by an annotator.

Autonomous annotation procedure : The difference vec-
tors in 3D position B of the head-front marker and S of the
head-top marker are used to define feature vectors (Figure5).
We use template matching by the k-nearest neighbor method
for the classification of head direction patterns. We set k = 2
in this approach.

4.5 Summary of Autonomous Annotation
We have applied the standard pattern recognition tech-

niques to annotate utterance, head gesture, hand gesture,
and head direction.

We evaluated the performance of these algorithms. Train-
ing and classification was done by using dataset from each
participant in one session. Annotation of that of head di-
rection and that of hand gesture were done in session 1.
Annotation of head gesture was done in session 9. Man-
ual annotation data of one narrator in narrative interaction
was used as a labeled training dataset for making the tem-
plates in KNN, training HMM, SVM. GMMs which have
been trained from unspecified speakers in Julius are used
for utterance annotation.

We summarize models an features, which were used for
annotation in Table 1. Performance (recall and precision)
of each recognizer are also shown in the table. Recall and
precision ratio are calculated by using number of frames
overlapped with manual annotated frames. Table 1 indi-
cates that the annotation of utterance (on/off), hand ges-
ture (on/off) and head direction (right/left) annotation were
moderately successful. On the other hand, it indicates that
we need to improve the performance to annotate head ges-
ture (on/off) and hand gesture phase (rest/stroke/hold).
Here, these trained models or templates are used for an-
notation of whole dataset.

5. CONTEXT BASED GESTURE FEATURES
After preparing label segment datasets annotated from

each nonverbal signal, we define feature vectors of each ges-
ture pattern from these label sets. The gesture feature sets
are composed of two feature sets: gesture phase features and
context features obtained from all participants.

5.1 Hand Gesture Features
Gesture segments (Section 4.2) include stroke segments

or (and) hold segments. The duration of stroke and hold
is different between gestures. Hold gestures are categorized
by prestroke and poststroke hold phases [16]. In particular,
a prestroke hold is an important feature related to stroke
gesture. In this research, we focus on function of stroke and
hold gesture parts in gesture segments and extract features
related to the use of such gestures. The gesture feature set
is defined as follows.

Total duration of gesture segment : The features de-
note the time length of gesture segment: TD

Mean and variation of 3d positions sequence : The
features are calculated from the 3D positions of markers
attached to both lists of a participant. The 3D position se-
quences within a timespan of the subjective gesture segment
is defined as follows: M = {m1, . . . ,mT }, where ml denotes
the six-dimensional coordinate vectors of 3D positions in
both lists. We calculate mean and variation statistic values:
|�mt| = |mt −mt−1|, (2 ≤ t ≤ T ). These statistics denote
the amount of hand movement variation. We define mean
and variation from 3D positions as : Ms, V s, respectively.

Frequencies of hold and stroke segment : In narra-
tive gestures, hold and stroke gestures are repeated by turns.
To characterize this property, repetition frequencies are im-
portant features. Here we count number of hold and stroke
segments including in each gesture segment and this number
is defined as the frequency. We define the features included
in a gesture segment as F = {FH , FS}. In the gesture data
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Table 1: Summary of autonomous annotation techniques: Performance denotes the result of experimental evaluation. r, p
denote recall and precision.

Features Recognizer Performance
Utterance MFCCs, �MFCCs GMM + Rule base r=0.82, p=0.92

Zero cross ratio, Amplitude
Head Direction 3d positions of head makers KNN (k=2) r=0.86, p=0.82
Head Gesture Features extracted using SVM r=0.75, p=0.69

discrete wavelet transform (DWT)
Hand Gesture 3d positions of list makers HMM r=0.80, p=0.75 (Gesture phase annotation)

r=0.99, p=0.82 (Gesture segment annotation)

example of Figure 1, two hold segments and one stroke seg-
ment are observed in the segment, therefore FH = 2, FS = 1.
Sum of duration of hold and stroke segment : The sum

of duration of hold SdH is calculated by the following equa-
tion: SdH =

∑FH
i=1 T

H
i /TD, where TH

i denotes the time
length of the ith hold segment in a gesture segment. SdS is
also calculated similarly. Finally, we define this feature as
Sd = {SdH , SdS}
5.2 Conversational Context Features

Conversational context feature sets are composed of self-
context features from participant making subjective gestures
and context features from other participants. All context
feature sets are calculated using co-occurrence relations be-
tween gesture segments and each nonverbal segments (ut-
terance, head gesture, and head direction). We define the
annotated gesture segment set as
Gi = {g1, . . . , gx, . . . , gNg}, where gx = {stgx, etgx}. Ng de-
notes the total number of gesture segments, stgx, etgx are the
start and end time of gesture segments gx, respectively. We
define a participant who makes subjective gestures as S1, the
other narrator as S2, and the listener who has not watched
the animation as S3. Here, Gi,j are composed of all gestures
made by the two narrators in 8 sessions. Index i denotes the
session number (1 ≤ i ≤ 8).

Next, we explore how looking, speaking, and head gesture
cues influence gesture recognition accuracy. We define the
other nonverbal segment dataset in a manner similar to the
gesture segment dataset. The nonverbal dataset is defined
as follows.

Speech utterance (speech) segment dataset is SPi, where
SPi = {SP1i, SP2i, SP3i}. SP1i denotes the speech seg-
ments from S1.

Head gesture : head gesture segment dataset is HGi where
HGi is defined to be the same as that in SPi.
Head direction : head direction segment dataset is Hi

We define gaze conditions of the three participants as six
states. Hi is defined below.
Hi = {H12i, H13i, H21i, H23i, H31i, H32i}, where H12i
denotes the segments where S1 faces S2, H12i is defined
to be the same as that in Gi

We calculate the co-occurrence joint features as context
features by using the overlap between two segments. Over-
lap ratio between gesture segments and other segments is
calculated by the following equation:

P (gx, npy) =
min(etgx, ety)−max(stgx, sty)

lx
,

P (gx, np) = max
y

P (gx, npy), (1)

where lx is the time length of gx, max(a, b), min(a, b) de-
notes the maximum and minimum values of frame a and
frame b, respectively. When P (gx, np) < 0, P (gx, np) = 0,

because npy which overlaps with the gesture does not exist.
We input each segment in SP1− SP3, HG1−HG3, H12−
H32 into segments npy and calculate the ratio between ges-
ture segments and other context feature segments from all
participants. We calculate this ratio in all sessions. Finally,
we complete the context features for xth gesture segment in
the session i as bellow.

Pi,x = {P (gx, sp1), . . . , P (gx, hg1), . . . , P (gx, h32)}, (2)

where sp1, hg1, h32 denotes the segment of SP1, HG1, H32,
respectively . The context feature is a 12-dimensional vec-
tor.

6. EXPERIMENT SETTING
In this section, we evaluate the proposed framework by

the classification task of multimodal gesture patterns into
narrative and other gestures. Annotations are performed on
all datasets by applying the pattern recognition techniques
described in Section 4. Head gesture detection, estimation
of head direction, and utterance segment detection are per-
formed automatically. On the other hand, we use manual
annotation data for hand gestures to evaluate the effective-
ness of the gesture phase feature in combination with other
features. First, 547 gesture segments are annotated manu-
ally, which included 162 narrative gestures. We define the
162 narrative gesture segments as a positive class and the
other 385 gesture segments as a negative class.

To train the proposed context-based classifier, we balance
the number of positive and negative samples, so we choose
162 negative gesture samples from the dataset randomly. In
this experiment, a 10-fold testing approach is used. In each
class, 17 samples are used for test purposes only, and 145
samples are used for validation and training. This process
is repeated 10 times, and a total of 100 experiments are
performed.

We calculate the accuracy (number of true positives/total
test data) to evaluate the classification performance. In our
experiments nonlinear SVM and AdaBoost [6] algorithms
are used for the classification of multimodal context features.
We use a Gaussian kernel for nonlinear SVM and validate
the bandwidth parameter γ of the kernel (γ = 10k, k =
1.. − 3). In AdaBoost the number of tree splits for weak
learning is validated with the value T = 5, ..10.

We explore the feature set to discriminate gestures that
accompany narrative speech and other gestures. To explore
the feature set, we prepare four combinations of multimodal
context features.

• F1 : Gesture signal feature set (TD +Ms+ V s)

• F2 : All gesture feature set (F1+F +Sd: This feature
set includes gesture signals and phase features.
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Table 2: Classification accuracy [%] of gesture patterns by SVM and AdaBoost
[%] F1 F2 F3 F4 (Proposed)

Motion features F1 + Gesture phase features F2 + Self context All features
SVM 59.1± 7.3 71.3± 7.0 71.7± 7.5 75.6± 7.0

AdaBoost 70.8± 8.5 71.7± 7.9 72.8± 7.7 73.7± 7.3

• F3 : Self-context-based gesture feature set: (F2 +
P (SP1) + P (HG1) + P (H12) + P (H13))

• F4 : conversational context-based gesture features and
gesture phase feature set (complete feature combina-
tion) (F2 + P)

On the case that different kind of features are combined into
1 vector, we have to normalize the scale of sample value.
We use the min-max data normalization method for this
purpose.

7. RESULTS AND DISCUSSION
Table 2 shows the classification results of SVM and Ad-

aBoost. In the experiments, the classification accuracy is
calculated by dividing the total number of true positives
and true negatives by total number of test data.

In both algorithms, increasing the number of features im-
proves the classification accuracy. In particular, the pro-
posed feature fusion strategy results in better classification
accuracy in the SVM. First, using gesture phase features
improves the accuracy from 59.1% (F1) to 71.3% (F2). Sec-
ond, using context features from other participants improves
the SVM accuracy from 71.7% (F3) to 75.6% (F4). Clas-
sification using the complete feature set F4 produces the
best accuracy in both algorithms. We compare the accu-
racies from both F4 and other groups using the Student’s
t-test in SVM. A Student’s t-test shows significant differ-
ence (p < 0.05) between F4 and the other groups (F1-F3).
On the other hand, the t-test shows the significant differ-
ence between F1 and F4 in AdaBoost. Totally these results
show that gesture phase features and context features from
all participants improve classification accuracy.

7.1 Context Feature Analysis using Topic Model
To identify the context features and gesture phase fea-

tures which contribute to recognize the narrative gesture
patterns, we use one of topic models: Latent Dirichlet Allo-
cation (LDA) [2] to analyze the effective features. By using
LDA, we extract the typical co-occurrence pattern set (joint
features) with gestures accompany to narrative speech. We
explore features which characterize the narrative gestures
by relating the each typical co-occurrence pattern to each
conversation scene,

LDA is a probabilistic generative model for documents
composed from word set (Bag of Words feature set). In
LDA, a text document d is modeled as a distribution p(z =

t|d) = θ
(d)
t over topics t, and a topic is as a multinomial

distribution p(w|z = t) = φ
(t)
w over words w. It is also used

for nonverbal behavior analysis [9]. Here we set a document
in the topic model as a gesture segment and words as the
gesture features (gesture phase and context features ).

Procedure of analysis by using LDA is as follows.

• Discretize each feature value by using a clustering method.
Hierarchical clustering based a ward method is used for
discretization of it and number of discretization levels

(clusters) is set to 4. Number of topics T is set from
5 to 15. In this paper, we show the analysis result in
T = 10.

• Estimate parameters of LDA from all gesture dataset
(N = 547) by using Gibbs sampling.

• Identify topics which are likely to generate narrative
gesture segment. Let narrative gesture segment set is
Gp and the other gesture segment set is Gn, we calcu-
late θ

(di)
t , di ∈ Gp and θ

(dj)
t , dj ∈ Gn. Next, we com-

pute Mp
t = p(z = t|Gp) by averaging over p(z = t|di)

and Mp
n in same manner. If a topic t∗ is generated from

gesture segments di in Gp frequently, Mp
t is larger than

Mn
t . We compare θ

(di)
t and θ

(dj)
t by using Student’s

t-test. If a Student’s t-test shows significant difference
(p < 0.05) between them, we defined the topic as t∗.

• Analyze the word distribution for topic t∗.

Table 3 shows set of topic t∗ and words (gesture features)
which generate t∗. Probability Pf of features is calculated
as Pf = φ

(t∗)
w /(

∑
w(φ

(t∗)
w )). We report Pf which is larger

than 0.2 in the table. The upper table shows topics which
generate the narrative gestures frequently.

Topic 2 shows that sum of duration of stroke SdS , fre-
quency of hold segments FH , total duration TD contribute
to generate the topic. This means that participants are more
likely to use hold gesture and long stroke gesture accom-
pany to narrative speech. Topic 4 shows that the other
participants are likely to make head gestures (nodding and
backchannel) when participants make narrative gestures.

Topic 5 shows that participants gaze to the other par-
ticipants (Pf of HG2, 3 is high) and also use long hold ges-
ture. Topic 7 shows that narrative gesture segments has long
time length (TD) and are made accompany to speech (SP1).
This is natural conversation context. Topic 10 shows that
the other gestures are used frequently, when another narra-
tor SP2 speaks. We observed this scene from video data,
and it is found that hands of a narrator S1 move when a
narrator S2 speaks. This gestures are not be paid attention
and will be self directed.

Totally, when participants use communicative gesture ac-
company to narrative speech, (1) the other participants are
likely to make head gestures, (2) hold gestures are used fre-
quently and (3) long stroke and long hold gestures. This
analysis also shows that the context features and the ges-
ture phase features are effective to identify these gesture.

7.2 Gesture’s Role in Multimodal Scenario
We showed possibility of the gesture-role-classification via

linking of contextual features with it. Seeing from the other
view point, these results also showed a possibility that com-
municative gestures can be used as features to recognize the
conversation scene, such as turn taking, floor transition and
addressing toward participants; and behaviors of speaker:
explanation and hesitate of saying.
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Table 3: Topics which generate gesture segments of each
class frequently

Narrative gesture The others
Topic 2 Topic 4 Topic 5 Topic 7 Topic 10

word Pf word Pf word Pf word Pf word Pf

SdS 0.52 HG2 0.40 H12 0.41 TD 0.45 SP2 0.52
FH 0.27 HG3 0.37 H13 0.32 SP1 0.30 Ms 0.48
TD 0.21 SdH 0.25

Toward understanding the roles of gestures in various con-
versational scene, we need to analyze the role of gestures in
richer multimodal scenario with lexical and prosodic fea-
tures and link the gestures with each conversation scene or
social attitude of the participant. These features help us
to characterize and model communicative gestures. [12][3]
show that prosodic features such the rhythm, pitch and into-
nation of speech are also important features which relates to
communicative gestures. Therefore using prosodic features
and lexical features are future works.

8. CONCLUSION
This paper proposed a feature extraction method for the

classification of communicative gestures used in small group
interactions. As effective features to discriminate conversa-
tional gestures accompanying narrative speech, we extracted
gesture phase features and co-occurring nonverbal patterns
with the gestures, i.e., utterance, head gesture, and head
direction of each participant. Experimental results showed
that using a combination of these features improved the clas-
sification accuracy related to conversational gestures. This
research focuses on classifying communicative gestures made
with narrative speech. As future work, we plan to apply this
feature extraction method to multiclass communicative ges-
ture role classification.
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