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SUMMARY We describe attempts to have robots behave as embodied
knowledge media that will permit knowledge to be communicated through
embodied interactions in the real world. The key issue here is to give robots
the ability to associate interactions with information content while interact-
ing with a communication partner. Toward this end, we present two con-
tributions in this paper. The first concerns the formation and maintenance
of joint intention, which is needed to sustain the communication of knowl-
edge between humans and robots. We describe an architecture consisting
of multiple layers that enables interaction with people at different speeds.
We propose the use of an affordance-based method for fast interactions.
For medium-speed interactions, we propose basing control on an entrain-
ment mechanism. For slow interactions, we propose employing defeasible
interaction patterns based on probabilistic reasoning. The second contribu-
tion is concerned with the design and implementation of a robot that can
listen to a human instructor to elicit knowledge, and present the content of
this knowledge to a person who needs it in an appropriate situation. In ad-
dition, we discuss future research agenda toward achieving robots serving
as embodied knowledge media, and fit the robots-as-embodied-knowledge-
media view in a larger perspective of Conversational Informatics.
key words: knowledge media, communicative artifacts, nonverbal commu-
nication, human-agent communication, intention, conversational informat-
ics

1. Introduction

Knowledge in the 21st century keeps evolving faster than
ever. As a result, it is much harder for individuals to receive
its full benefits. This hinders the penetration of knowledge
for avoiding life’s dangers and pitfalls which should serve
as the basis of leading a peaceful existence, threatening the
safety of society. We certainly need an effective means of
helping people create and share knowledge.

The long term goal of this research was to develop
robots that could serve as embodied knowledge media to
help people communicate with one another. We focused on
conversation because it is a natural means for people to com-
municate, and in fact knowledge is most effectively created,
extended, consumed, and criticized in actual conversations.
In this paper, we address issues with building a robot that
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can participate in conversations on the spot in the real world
and can communicate knowledge through embodied inter-
actions.

Conversation is a sophisticated intellectual process
where meaning is associated with complex and dynamic in-
teractions resulting from collaboration between the speaker
and listener. Building artifacts that can be involved in the
conversation process and produce useful interactions at the
knowledge level is quite challenging.

Communication behaviors can generally be classified
into those that are verbal and nonverbal. Roughly speak-
ing, verbal communication means slow and logical commu-
nication. In contrast, nonverbal communication means fast
and sophisticated coordination of conversational behaviors,
playing an important role in forming and maintaining joint
intentions in real time.

Nonverbal communication is considered to underlie
and therefore precede verbal communication in forming and
maintaining intentions, which is considered to be a funda-
mental capability of a real robot. Forming and maintaining
intentions at the nonverbal communication level is used to
interactively determine intentions at varying levels. For ex-
ample, a listener may look away from an object in focus and
look at the speaker’s face when s/he does not follow the ex-
planation [1]. This demonstrates how eye contact is used in
ordinary conversations to signal the speaker to repeat the ut-
terance so that the listener may be able to understand it. The
process normally takes a short time and is carried out almost
unconsciously in daily situations.

Nonverbal interaction makes up a significant portion of
human-human interactions [2]. McNeill suggests that verbal
and nonverbal expressions occur in parallel for some psy-
chological entities called growth points [3].

Robots that can merely exchange verbal information
with humans might fail to participate in human conversa-
tions in the real world, for people extensively use nonver-
bal information to coordinate their conversational behaviors.
Robots should be able to detect various signs of nonver-
bal communications that participants produce, capture the
meaning associated with interactions, and coordinate their
behavior during the discourse. In other words, robots should
be able to play the role of active and sensible participants in
the conversation, rather than standing still listening to the
speaker, or continuing to speak without regarding the lis-
tener.

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers
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We took an ecological approach to overcome these dif-
ficulties. We attempted to give robots the ability of behav-
ing according to the surface discourse of the conversation
to capture or present information content, rather than ex-
changing meaning based on deep understanding. In other
words, it appears feasible to aim at building robots that can
mimic conversational behavior at least on the surface and act
quickly to meet temporal requirements in nonverbal com-
munication. For example, our robots will move eye gaze on
the object when the partner has been recognized as paying
attention to that object, successfully creating joint attention.
The media equation theory [4] suggests that superficial sim-
ilarities might allow people to coordinate behavior. In addi-
tion, it is also reasonable to expect that a robot will be able
to infer that an object has a respective role in the conversa-
tion, which will enable it to add a proper discourse label to
the record of the object.

2. Robots as Embodied Knowledge Media

This section overviews ecological approaches to implement-
ing robots as embodied knowledge media. The key issue
here is how to give robots the ability of associating inter-
actions with information content while they are interact-
ing with a communication partner. Conversation quanti-
zation gives the basis for associating interaction-oriented
and content-oriented views with conversation. We point
out that the ability of forming and maintaining joint inten-
tions constitutes the foundation for making robots act as a
communicative artifact. We introduce listener and presenter
robots as prototypes of the idea of robots acting as embodied
knowledge media.

2.1 Conversation Quantization as Implementation of Eco-
logical Approach

Conversational quantization introduces conversation quanta
to describe quantized segments of conversation. Each
conversation quantum integrates conversation-as-interaction
and conversation-as-content views.

The conversation-as-interaction view sheds light on
how each conversation partner coordinates her/his behav-
iors to communicate with the other. Joint attention is a typ-
ical example. When the speaker looks at some object and
starts talking about it, the listener should also look at it to
demonstrate that the listener is paying attention to the ex-
planation. When the listener loses the trail of discourse dur-
ing the speaker’s explanation of the object, s/he may look at
the speaker’s face and probably murmur to signal that s/he
has lost the point (Fig. 1). The speaker should be able to
recognize the flaw in communication, and take an appropri-
ate action such as suspending the flow of explanation and
supplementing it with more information. Thus, the conver-
sation as a process is sustained and ceased as the result of
collaboration between the speaker and listener.

The conversation-as-content view, on the other hand,
focuses on how meaning emerges from interaction. Con-

Fig. 1 Conversation as interaction.

Fig. 2 Conversation as content.

Fig. 3 Example of conversation quantum.

sider the situation where the speaker is telling the listener
how to disassemble a device, saying “turn the lever this
way to remove the component” (Fig. 2). Nonverbal behav-
ior, such as the eye contact and gestures of the speaker, will
associate the utterance with its information content as a se-
quence in the speaker’s actions.

The role of the conversation quantum is to represent
the association between information content and interaction
within minimal units of conversation. For example, we can
create the conversation quantum in Fig. 3 for the situation in
Fig. 2. It contains a description of a visual scene where the
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Fig. 4 Framework for conversation quantization.

speaker provides an answer to the hearer in response to the
question raised by the hearer. It also contains a description
of an interaction where the speaker is explaining by pointing
out a component to the listener who is listening to her/him
while paying attention to an object.

The approach to conversation quantization is to ac-
quire, accumulate, and reuse conversation quanta (Fig. 4). In
addition to the basic cycle of acquiring conversation quanta
from a conversational situation and reusing them in the pre-
sentation through embodied conversational agents, conver-
sation quanta may be aggregated and visually presented to
the user, or some manipulation such as summarization may
be added to transform one or more conversation quanta into
another, or converted to and from various kinds of informa-
tion archives [5].

The role of a robot is to acquire or present informa-
tion and knowledge situated within the discourse, by engag-
ing in appropriate behavior as a result of recognizing the
other participants’ conversational behaviors. In future, the
aggregated collection of conversation quanta will serve as a
knowledge base for driving robots.

Our current research focuses on establishing robust
nonverbal communication that can serve as a basis for as-
sociating content with interaction.

2.2 Formation and Maintenance of Joint Intentions

We attempted to realize a communication schema that
would allow two or more participants to repeat observations
and reactions at varying speeds to form and maintain joint
intentions to coordinate behavior, which may be called a
“coordination search loop.”

We propose an architecture consisting of layers to deal
with interactions at different speeds to achieve this coordi-
nation search loop (Fig. 5) [6].

The lowest layer is responsible for fast interaction. We
based the design of this level on affordance [7], which refers
to the bundle of cues the environment provides the actor. We
relied on people’s capabilities of utilizing various kinds of
affordances even though these are subtle. We designed the
layer at this level so that a robot could suggest its capabilities
to the human, coordinate its behavior with her/him, establish

Fig. 5 Listener and presenter robots as embodied knowledge media.

Fig. 6 Listener and presenter robots as embodied knowledge media.

a joint intention, and provide the required service.
The intermediate layer is responsible for interactions at

medium-speed. We introduced an entrainment-based align-
ment mechanism so that the robots could coordinate their
behaviors with the interaction partner by varying rhythms
of nonverbal behaviors.

The upper layer is responsible for slow and deliberate
interactions such as those based on social conventions and
knowledge to communicate more complex ideas based on
the shared background. We introduced defeasible interac-
tion patterns to describe typical sequences of behaviors ac-
tors are expected to undertake in conversational situations.
A probabilistic description was used to cope with the vague-
ness of the communication protocol used in human society.

2.3 Listener Robot and Presenter Robot as Prototypes of
Embodied Knowledge Media

We built listener and presenter robots on top of the three
layer model, aiming at prototyping the idea of robots as em-
bodied knowledge media. The pair of robots serves as a
means of communicating embodied knowledge (Fig.6). The
listener robot first interacts with the human with knowledge
to acquire knowledge quanta. The presenter robot, equipped
with a small display, will then interact with a human to show
the appropriate video in appropriate situations where this
knowledge is considered to be needed. Conversation quanta
are used to encode knowledge transferred from the listener
to the presenter robot.

We elaborate on these ideas and present some prelimi-
nary work in two sections that follow.
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3. Architecture of Robots that Can Form and Maintain
Joint Intentions with Humans

This section describes attempts to achieve robots that can
form and maintain joint intentions to coordinate appropriate
conversational behaviors with people. Some of the result-
ing techniques are incorporated in the listener and presenter
robots described in the next section.

3.1 Elicitation and Maximization of Affordance

Affordance encompasses various kinds of information that
the environment provides an actor attempting to achieve
goals [7]. We considered that the robots could exhibit coop-
erative behaviors by maximizing the affordance they were
expected to produce. The key issue was to define affor-
dance as a simple collection of measurable physical fea-
tures so that we can implement algorithms for recognizing/
producing it.

To further investigate this idea, we developed an au-
tonomous mobile chair that could dynamically produce a
means of allowing a person to get a place to sit down [8].
The autonomous mobile chair perceives the relation be-
tween the surface of the actor’s body and the surface of the
environment, i.e., a measure called the affordance distance
that is characterized as the minimal distance between the
surface of the autonomous mobile chair and human body.
The affordance distance decreases as the autonomous mo-
bile chair approaches the human. The optimal action se-
quence depends on multiple factors such as the shape and
locomotive ability of the autonomous mobile agent and the
relative angle of the two surfaces.

We designed the autonomous mobile chair so that it
could learn to move to a configuration where the affordance
distance was minimal. The affordance distance is computed
using a utility function†:

U(s) = R(s) +max
a

∑
s′

Ma
ss′U(s′),

where R(i) is a reward function that will return the value
of the reward in state i. Ma

ss′ is the transition probability
of reaching state s′ if action a is done in state s. Ma

ss′ is
obtained by repeating the same action in the same state:

Ma
ss′ =

ns′

na
s
,

where na
s is the number of times action a is undertaken in

state s, and ns′ is the number of states, s′, reached then. We
provide a reward when a certain point of the artifact’s body
touches a certain point of the human’s body. The goal can
be specified as:

(x, y, z)p = (x, y, z)q and (θ, φ, ϕ)p = −(θ, φ, ϕ)q,

where (x, y, z)p and (x, y, z)q are the coordinates for the
points of the human’s and artifact’s bodies. (θ, φ, ϕ)p and
(θ, φ, ϕ)q are the angles of the normal vector for points of

the human’s and artifact’s bodies, respectively. To calculate
the utility value of each state, we used a simple iterative al-
gorithm

Ut+1(s)← R(s) +max
a

∑
s′

Ma
ss′Ut(s′),

where Ut(s) is the utility value of s after t iterations.
We implemented the autonomous mobile chair. Its

shape, the utility function, and typical behaviors are shown
in Fig. 7. We carried out several experiments. Interactions
with several users are shown in Fig. 8. Although the users
were all able to sit down on the chair as a result of coordinat-
ing behaviors, some users pointed out that the autonomous
mobile chair should have communicated its intentions more
explicitly.

(a) (b)

(c)

(d) (e)

Fig. 7 Autonomous chair, its utility function, and typical behaviors. (a)
Implemented autonomous chair, (b) Definition of parameters, (c) The shape
of utility function, (d) One trajectory, (e) Another trajectory.

†The affordance distance is given as the inverse number of the
value of the utility function.
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(a)

(b)

(c)

Fig. 8 Autonomous mobile chair interacting with people. (a) Interaction with person A, (b) Interac-
tion with person B, (c) Interaction with person C.

Fig. 9 Outline of entrainment-based interaction.

3.2 Entrainment-Based Interaction

Entrainment-based interaction allows a joint intention to be
established in two steps (Fig. 9) [9]. The first step is called
the synchronization phase. Assume one actor A wants to
establish a joint intention with another actor B. First, A en-
gages in rhythmic behavior, signaling an intention to estab-
lish a joint intention with B. When B recognizes this, B
will change behavior so as to synchronize with the observed
rhythm.

The second step is called the modulation phase. Once
A observes that B is acting with the same rhythm, A may
gradually change her/his rhythm so that B’s behavior may
become more desirable to A. This will cause B to modify
her/his intention to converge to A’s behavior.

From a theoretical point of view, synchronization and
modulation are characterized as a means of bridging dynam-

ical systems for A and B. Let us represent the state of A and
B as vectors �x and �y, and assume the intrinsic behaviors of
A and B are governed by functions f (�x) and g(�y). Then, the
behaviors of A and B are presented as:

d�x
dt
= f (�x) + α(�x, �y)

d�y
dt
= g(�y) + β(�x, �y)

where terms α(�x, �y) and β(�x, �y) are connecting the dynamical
systems for A and B.

Suppose the human and the robot play the roles of A
and B, and the human’s behavior is given as time series�i(t)
(which is assumed to be in the same vector space as �x and
�y). We pursue synchronization and modulation operations,
when necessary to reflect the user’s intention manifesting as
�i(t) on β(�x, �y). We first store the time series of�i(t) for a cer-
tain period, W. When the amount of stored data reaches W,
we calculate the autocorrelation function to compute cycle
T after noise has been eliminated and power has been nor-
malized. When the peak exceeds the threshold, we assume
that the behavior is periodic and estimate the average pat-
tern for the repeated behavior. High frequency segments are
removed at this stage.

We then perform a method based on [10] to define
(dx/dt, dy/dt) in the phase space so that the repeated be-
havioral pattern becomes an attractor that asymptotically at-
tracts nearby orbits.

We now proceed to the modulation phase when syn-
chronization is detected. We calculate the deviation in input
in this phase from the expected cyclic behavior. Once this
is completed, we modify the basic repetitive behavior by
adding the difference.

We implemented a simulated floor cleaning robot sys-
tem. A human can interact with multiple robots with hand
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Fig. 10 Comparison of entrainment-based interaction with different al-
gorithms.

gestures captured by a motion capture device. We carried
out some experiments to compare the amount of time it took
to complete a cleaning task and the amount of the time re-
quired to manipulate the cleaning robot. We found that the
method we propose falls between fully manual control by a
remote controller and a fully automated cleaning algorithm
based on a random walk, as plotted in Fig. 10.

3.3 Defeasible Interaction Patterns

We employed Bayesian networks to describe typical pat-
terns of social conventions for conversational interactions.
We used a probabilistic framework to cope with the fact
that the social protocols are not rigid [11]. To investigate
the issue further, we implemented a simplified version of a
waiter robot that approached or stayed away depending on
demands by a human. The waiter robot attempted to de-
tect the human’s intentions and the situation within the en-
vironment, by collecting and interpreting information about
the inter-personal distance, direction of the gaze and the ac-
knowledgment (ACK), in addition to the history record of
human-robot interaction and the current action of the robot,
based on knowledge encoded as defeasible interaction pat-
terns.

In our experimental settings for evaluating the perfor-
mance of a waiter robot interacting with a customer, we as-
sumed that the customer had three tasks, i.e., asking for a
drink, asking for an empty glass to be removed, and ap-
proaching the robot to get a drink. A typical sequence of
interactions between the customer and the waiter robot was:

- the customer wanted to call the waiter robot;
- the customer raised or waved her/his hand at a distance;
- the robot approached the customer;
- the robot started to communicate with the customer.

Defeasible interaction patterns were implemented with
a Bayesian network based on Bayes’ principle:

P(X|Y) =
P(X, Y)

P(Y)
=

P(Y |X)P(X)
P(Y)

.

A portion of the Bayesian network we employed is shown

Fig. 11 Schema-based interaction using Bayesian network.

in Fig. 11. A random variable is represented by an ellip-
tic node, and causality is represented by an edge connect-
ing nodes. The table behind each node contains the random
variable’s possible values for the node.

We used conditional probabilities such as P(CA| ACK)
and P(RA| ACK) to represent causal dependencies among
variables, where P(CA| ACK) stands for the probabilities of
CA, i.e., the customer may lift her/his arm (CA = U) or put
down her/his hand (CA = D) under various possible condi-
tions for ACK including NA (no acknowledgment), RA (ac-
knowledgment by robot), CA (acknowledge by customer)
and MA (mutual acknowledgment). The probabilities are
specified using matrices like:

CA

ACK

D U
NA
RA
CA
MA


0.85 0.15
0.85 0.15
0.15 0.85
0.15 0.85



RA

ACK

D U
NA
RA
CA
MA


0.9 0.1
0.1 0.9
0.9 0.1
0.1 0.9

,
which suggests that

P(CA = D| ACK = NA) = 0.85,

P(CA = U| ACK = NA) = 0.15,

P(CA = D| ACK = RA) = 0.85.

Similarly, we may also assume the values of other condi-
tional probabilities:

ACK

CS

NA RA CA MA
IDL
OPN
CNV
CLS


0.65 0.15 0.15 0.05
0.1 0.4 0.4 0.1
0.05 0.15 0.1 0.7
0.3 0.2 0.1 0.4


D

CS

F M N
IDL
OPN
CNV
CLS


0.6 0.3 0.1
0.5 0.4 0.1
0.05 0.15 0.8
0.05 0.15 0.8
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G

CS

NA CGR RGC MG
IDL
OPN
CNV
CLS


0.45 0.3 0.2 0.05
0.05 0.4 0.4 0.15
0.1 0.2 0.2 0.5
0.1 0.3 0.3 0.3


NS

CS

IDL OPN CNV CLS
IDL
OPN
CNV
CLS


0.5 0.4 0.05 0.05
0.3 0.15 0.5 0.05
0.1 0.05 0.4 0.45
0.7 0.2 0.05 0.05

.
Given the values of a priori probability P(CS),

P(CS = IDL) = 0.5, P(CS = OPN) = 0.1,

P(CS = CNV) = 0.3, P(CS = CLS ) = 0.1

we can calculate the value of P(ACK = NA):

P(ACK=NA) = P(ACK=NA|CS = IDL)·P(CS = IDL)

+P(ACK=NA|CS =OPN)·P(CS =OPN)

+P(ACK=NA|CS =CNV)·P(CS =CNV)

+P(ACK=NA|CS =CLS )·P(CS =CLS )

= 0.65×0.5+0.1×0.1+0.05×0.3+0.3×0.1

= 0.38.

Similarly, we can derive the values of other conditional
probabilities as

P(ACK = RA) = 0.18, P(ACK = CA) = 0.155,

P(ACK = MA) = 0.285, P(CA = D) = 0.542,

P(CA = U) = 0.458.

Consider that CA = U (the customer has lifted her/his
arm) is observed. Then, we obtain:

P(ACK = NA|CA = U)

=
P(ACK = NA) · P(CA = U |ACK = NA)

P(CA = U)

=
0.38 × 0.15

0.458
� 0.124,

which implies that the ACK = NA (“the customer does not
acknowledge”) becomes less probable. On the other hand,
we also obtain:

P(ACK = CA|CA = U)

=
P(ACK = CA) · P(CA = U |ACK = CA)

P(CA = U)

=
0.155 × 0.85

0.458
� 0.288,

which implies that ACK = CA (“the customer acknowl-
edges”) becomes more probable.

The method was implemented using Robovie2 as a
platform. Figure 12 shows how the implemented waiter
robot could distinguish subtle differences resulting in a
course of interaction with the customer. We carried out
small-scale experiments and found that the waiter robot
worked as designed.

(a1) (a2) (a3)

(b1) (b2) (b3)

Fig. 12 Interaction with defeasible interaction patterns. (a1) C raises
hand, (a2) R approaches, (a3) R approaches closer, (b1) C touches his hair,
(b2) R approaches, (b3) R leaves. (C: customer, R: robot).

Fig. 13 Video data on explanatory scene.

4. Listener and Presenter Robots

We describe the listener and presenter robots as prototypes
of the embodied knowledge medium paradigm in this sec-
tion.

4.1 Listener Robot

The listener robot is designed to undertake appropriate non-
verbal behavior while the presenter is explaining and pro-
ducing a series of conversation quanta as records of the con-
versation. When the listener robot was first implemented,
the subject domain was furniture assembly [12]. Later, we
also applied the framework to bicycle assembly and disas-
sembly.

We observed the conversation in detail to obtain a pre-
cise model of the behavior of the listener, where the instruc-
tor explained the procedure for assembling furniture to the
listener.

We videotaped some scenes where a person as instruc-
tor was explaining how to assemble a piece of furniture (a
metal rack, see Fig. 13) to another person as listener, and
analyzed the video in detail using a video annotation tool,
Anvil†. Table 1 lists the result of analysis. We found that
when the instructor attended to an object, the listener at-
tended to it more than 75% of the time. Thus, joint attention

†http://www.dfki.de/∼kipp/anvil/
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Table 1 Analysis of listener’s behaviors.

between the instructor and the listener was achieved very
frequently. Moreover, when the instructor turned his gaze
to the listener, he turned his gaze back to the instructor for
more than 70% of occasions. In many cases, the listener
nodded in concurrence with his gaze, but the frequency dif-
fered greatly depending on individuals. Of the exchanges
occurring during communication, the following sequence of
events was most frequently observed during short periods:

the instructor turned his gaze toward the listener, the lis-
tener turned his gaze back to the instructor, the listener
nodded (or did nothing), the instructor looked at the ob-
ject to be explained, and the listener looked at it.

We suspect that the above sequence took place when
the instructor wanted to confirm the listener was paying at-
tention. We also obtained additional observations:

- Showing the object with his hand and turning his gaze
frequently attracted the listener’s attention,

- the listener usually attended to the object after the instruc-
tor exhibited multiple behaviors (e.g. showing and gaz-
ing), and

- when the instructor moved or changed his posture, the
listener paid attention to the instructor himself instead of
the object.

Based on the observation that attention behaviors were
frequently represented with more than one modality or in re-
peating fashion, we propose that redundancy of attention be-
haviors should be applied to the design of a natural commu-
nication environment using a listener robot. The instructor’s
redundant behaviors strongly suggest the intention of his be-
haviors. Recognizing redundancy enables the listener robot
to easily understand the instructor’s intention. The effec-
tiveness of applying informative redundancies to an agent’s
sensors and actuators is also suggested by [13].

We assumed that there were two types of redundancy
in instructor-listener communication:

- Redundancy of modality: Simultaneously using multiple
modalities of behaviors.

- Redundancy of time: Using repetitive or persistent behav-
iors.

We designed the behavior of the listener robot so that
it could distinguish four modes of communication, i.e., the
talking-to, talking-about, confirming, and busy modes.

In the talking-to mode, the instructor (the human) is
mainly watching the listener (the robot) and is involved in
the cognitive space based on the relation between them. As

(a) (b)

Fig. 14 Robobvie2 and attachment of 3D position sensors to the human
(Two more sensors are attached to back of head and waist).

the instructor in the talking-to mode expects the listener to
be involved in the same conversation, s/he should pay atten-
tion to her/him.

In the talking-about mode, the instructor is mainly
watching the target to be explained, expecting the listener
to cognitively share the target. Whenever the listener rec-
ognizes that the instructor is in the talking-about mode, the
listener will attend to the target in turn.

In the confirmation mode, the instructor alternately
looks at the listener and the target, suggesting that s/he is
interested in whether or not the listener is paying attention
to the target. The listener should sensitively react to the be-
haviors of the instructor.

In the busy mode, the instructor is devoting himself to
his work without talking to the listener. The instructor is at-
tending more to the target than in the talking-about mode,
and tends to ignore the listener. This situation is not favor-
able for any explanatory task, but it frequently occurs when
the instructor is not skillful. The listener robot can keep at-
tending to the target during the busy mode.

We used a humanoid robot, called Robovie2
(Fig. 14 (a)) as the robot platform. Robovie2 is almost as
tall as a human and can move its hands, head, and eyes.
The motions of the instructor and the location of significant
objects are captured by a motion capture system called Mo-
tionStar. The motion capture system’s ten 3D position sen-
sors are attached to the human’s body (Fig. 14 (b)). In ad-
dition, several more 3D position sensors are attached to the
salient objects in the environment, which will be referred to
during the course of explanation. Although we sensed the
speech of the human, only its power was utilized and no
speech recognition facilities were employed.

The attention behaviors of the instructor were recog-
nized in two steps.

First, the basic communicative behaviors of the human,
such as eye gaze (head direction), pointing, holding, repet-
itive hand gestures (e.g., tapping), physical relationship to
objects (i.e., distance and body direction), were recognized
from the sensory data and attention toward each target was
inferred. The confidence of each behavior was calculated
using simple algorithms, except for the repetitive behaviors.
For example, the direction of the gaze was estimated from
the directions of two markers attached to the instructor’s
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head. Holding was recognized by calculating the distance
between the hand and object. However, we did not infer the
precise direction of the eyes, for this was difficult to recog-
nize from motion capture information. Repetitive gestures
of the hands were recognized by employing the methods de-
scribed in Sect. 3.2.

The confidence values of respective behaviors were re-
garded as scores, and the redundancy of attention behaviors
toward the target (redundancy of modality) was inferred by
summing up the confidence values with respective weights.

Each weight depended on the current communication
mode and the duration of behaviors (redundancy of time).
For example, in the talking-to mode, the weights were less
than in any other mode, for gazing attention at the target did
not frequently occur in the talking-to mode.

The communication mode was inferred based on the
recognition of target attention (with the largest redundan-
cies), gaze at the listener robot, body direction toward the
listener robot, attention behavior (e.g., posture change),
speech (power, duration), and preceding communication
mode. For example, the talking-to mode was inferred when
frequent speech, and the instructor’s body and face toward
the listener were recognized, while the confirming mode
was inferred if momentary gaze toward the listener was ob-
served during target attention.

The listener robot’s behaviors were determined based
on the redundancy of attention behavior and the communi-
cation mode, as described in Fig. 15. The object with the
largest redundancy was selected as the target for the listener
robot’s attention.

We implemented a listener robot. Figure 16 shows how
the listener robot interacts with the human instructor. Fig-
ure 17 shows critical scenes captured during interaction be-
tween the human instructor and listener robot.

(a) (b) (c) (d) (e) (f)

Fig. 16 Listener robot interacting with instructor. (a) Attention by gaze and head orientation, (b)
Using arm to confirm object of attention, (c) Attention to instructor, (d) Joint attention by instructor
pointing, (e) Joint attention by instructor lifting object, (f) Confirmation of instructor’s intention of
drawing attention.

(a) (b) (c) (d) (e) (f)

Fig. 17 Content captured by listener robot and cameras on floor. (a) Presentation to listener, (b)
Attention to task being explained, (c) Confirmation by instructor, (d) Overview of task, (e) Instructor
pointing, (f) Attention to pointed object of reference.

4.2 Presenter Robot

The presenter robot is designed to approach the task area
when it detects the human listener’s need for help [14]. It
will then adjust the position and angle of the display ac-
cording to the listener’s position and posture, and show the
video to the listener.

To approach the listener’s work area and play suitable
explanatory videos as shown in Fig. 18, the robot will de-
termine distance D and direction F to the listener, based on
location information obtained from motion capture. Let the

Fig. 15 Listener robot’s behavior in four communication modes.
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Fig. 18 Adjusting position of display with touch sensor.

center position of the robot be O = (Ox,Oy,Oz), the direc-
tion of the robot’s estimated gaze be A = (Ax, Ay, Az), the
center position of the listener be U = (Ux,Uy,Uz). D and F
are calculated as:

D = |U − O|
F = arccos

(
A · (U − O)
|A| · |U − O|

)
.

The robot will move to the listener and face to her/him
if D is larger than a predetermined threshold and F devi-
ates from zero (the robot is not appropriately faced to the
listener).

To select an appropriate explanatory video for the lis-
tener, the robot will search for one with features that match
the current situation. To determine the zoom ratio, the pre-
senter robot will measure how much time s/he spends on
attending to the target object. The longer s/he looks at the
target object, the more zoomed in the video will be.

We allow the listener to adjust the display’s position so
that s/he can clearly see the display. The robot will calcu-
late the height of the listener’s head and waist based on data
from sensors attached to her/his body. Parameters H (that
denotes the default height of an average user), α and β (the
user’s feedback parameters with an initial value of 0) will
be used to determine the display’s height, H + α, the dis-
play’s direction, β, from which the robot arm’s axis, roll and
pitch will be derived to adjust to the listener. The display
will keep still if it is likely that the listener is working on the
object. The display’s optimal position depends on her/him.
It will be adjusted according to her/his height and posture.
The robot will also permit her/him to adjust the display’s po-
sition directly by touching the tactile sensors on the robot’s
arm.

The architecture of the presenter robot is outlined in
Fig. 19. The implementation of the presenter robot is cur-
rently in progress with the bicycle assembly as the sub-
ject domain. According to the change in task, we also re-
implemented the listener robot in this domain.

5. Future Work

To complete the work on listener and presenter robots, we
need to solve a handful of remaining problems. The ma-
jor problem is to automate the acquisition of conversation
quanta. We are currently implementing an algorithm based

Fig. 19 Architecture of presenter robot.

on analysis of nonverbal communication means and intelli-
gent annotation. In addition, we are addressing the follow-
ing problems.
(1) Intention detection using signal processing
The robot should be able to behave efficiently, to establish
robust communication between itself and the humans even
in noisy environments. We consider low-level intention de-
tection using signal processing is promising and propose in-
teractive and active perception that can serve as an amplifier
of intended behavior [15].
(2) Learning
Interaction is a complex behavior, and the construction of
a knowledge base for creating complex interactive behav-
iors is a bottleneck. Preliminary work toward modeling and
acquiring knowledge for alignment is in progress. We are
employing dynamic Bayesian networks as the basis and are
working on implementing a learning algorithm [16].
(3) Mutual adaptation
To achieve a robust communication robot, we need to imple-
ment mutual adaptation not only by giving the robot the abil-
ity of adapting to its partner’s behaviors, but also by making
the learning capabilities comprehensible by the communica-
tion partner.

To collect detailed observations about humans’ mutual
adaptation, we devised an experiment environment [17]. We
are currently carrying out extensive studies on analyzing and
modeling human behavior.

6. Conversational Informatics — Communicative Rob-
ots in a Larger Perspective

The robots-as-embodied-knowledge-media view discussed
in this paper fits in a larger perspective of Conversational
Informatics [18], which is a field of research aiming at in-
vestigating human conversational behaviors as well as de-
signing conversational artifacts that can interact with people
in a conversational fashion. Conversational Informatics at-
tempts to establish a new technology consisting of environ-
mental media, embodied conversational agents, and man-
agement of conversational contents, based on the foundation
of Artificial Intelligence, Pattern Recognition, and Cogni-
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Fig. 20 Conversational Informatics.

tive Science. The major application areas of Conversational
Informatics involve knowledge management and e-learning.
Although Conversational Informatics covers a broad field of
research encompassing linguistics, psychology and human-
computer interaction and interdisciplinary approaches are
truly important, the engineering aspects are emphasized that
are more prominent in recent novel technical developments
such as conversational content acquisition, conversation en-
vironment design and quantitative conversational modeling.

The current technical development of Conversational
Informatics centers around four subjects (Fig. 20).

The first subject is conversational artifacts. We address
how to build artifacts, synthetic characters on the computer
screen or intelligent robots that can help the user by mak-
ing a conversation not only with natural language but also
with eye gaze, facial expressions, gestures, or other nonver-
bal communication means. Example of the major techno-
logical contributions is knowledgeable embodied conversa-
tion agents that can automatically produce emotional and so-
cially proper communication behaviors in human-computer
interaction [19], [20].

The second subject is conversational contents. We
address building a suite of techniques for acquiring, edit-
ing, distributing, and utilizing the contents that can be pro-
duced and applied in the conversation. Example of the ma-
jor contributions to this subject is Sustainable Knowledge
Globe (SKG), which supports people to manage conversa-
tional content by using geographical arrangement, topologi-
cal connection, contextual relation, and a zooming interface.
By using SKG, a user can construct his content in the virtual
landscape, and then explore the landscape along a conversa-
tional context. [21].

The third subject is conversation environment design.
We address designing an intelligent environment that can
sense the conversational behaviors to either help participants
be involved in collaboration even though they may be acting
at distant places or record conversation accompanying the
atmosphere of the conversational behavior for later use or

review. Example of contributions to this subject is a ubiq-
uitous sensor room that can be used to measure and capture
conversational behaviors [22].

The last subject is conversation measurement, analysis
and modeling. Motivated by scientific interest, we take a
data-driven quantitative approach to understanding conver-
sational behaviors by measuring conversational behaviors
with advanced technologies and building detailed quantita-
tive models about various aspects of conversation. Example
of contributions to this subject include is analysis of syn-
chrony tendency, which is nonverbal behaviors such as body
movement and speech interval that tend to synchronize and
become mutually similar [23].

The robots-as-embodied-knowledge-media view fits in
multiple issues in the perspective of Conversational Infor-
matics. Obviously, the presenter and listener robots can
be discussed in the context of conversational artifacts. An
important future challenge is to build a full-fledged con-
versational robot that can communicate humans with ver-
bal and nonverbal communication means. In this paper, we
placed much emphasis on integration of the conversation-
as-interaction and conversation-as-content views. Conver-
sation quantization is proposed as a major framework for
it, and is discussed in the context of conversational con-
tents where conversational robots may be characterized as
a device that can produce association between interaction
and content. The viewpoints of Conversational Environment
Design should be taken into account when we actually de-
sign an artificially augmented environment where humans
and robots co-habit (Fig. 21). As the perceptual and com-
municative abilities of robots might be limited, the entire
environment should be carefully designed so that humans
and artifacts may produce useful interactions. An ecolog-
ical approach is considered to be promising in the current
state-of-the-art. Conversation Measurement, Analysis and
Modeling constitute the basis of designing the artificial en-
vironment, especially when an ecological approach is taken.
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Fig. 21 Robots-as-embodied-knowledge-media in a larger perspective.

7. Conclusion

Building a system of conceptualization grounded on real
world situations has been a long-term goal of Artificial In-
telligence and Human Computer Interaction. In this pa-
per, we have presented the robots-as-embodied-knowledge-
media view, and described work with a layered approach to
allow robots to form and maintain joint intention with hu-
mans, and a listener and presenter robot pair to create as-
sociations of information content and interaction, as a step
toward achieving this goal.
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